
Copyright
c

 1992 by Peter William Madany

AN OBJECT-ORIENTED FRAMEWORK FOR FILE SYSTEMS

BY

PETER WILLIAM MADANY

B.A., Trinity Christian College, 1982

M.S., Illinois Institute of Technology, 1984

THESIS

Submitted in partial ful�llment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1992

Urbana, Illinois

AN OBJECT-ORIENTED FRAMEWORK FOR FILE SYSTEMS

Peter William Madany, Ph.D.

Department of Computer Science

University of Illinois at Urbana-Champaign, 1992

Roy H. Campbell, Advisor

File systems are essential components of general purpose operating systems and are highly

visible to computer users. To satisfy the growing diversity of persistent storage needs presented

by application and system programs, operating systems should support both standard and cus-

tomizable �le systems. To facilitate the design, construction, and use of these �le systems, they

should �t within a general and extensible model. Currently �le systems are based on one of a few

common models that are neither general nor extensible. This thesis shows that a simple, gen-

eral, and extensible model can be constructed by presenting an object-oriented framework that

contains a few powerful persistent storage abstractions. The framework supports the charac-

terization, design, and construction of both common �le systems and experimental �le systems.

The object-oriented approach was chosen to exploit the techniques of data encapsulation, data

abstraction, inheritance, and polymorphism.

The framework is called the Choices �le system framework. It contains two fundamental

abstractions: the PersistentStore class de�nes objects that manage the storage and retrieval of

raw persistent data, and the PersistentObject class de�nes objects that encapsulate and provide

operations on the data managed by persistent stores. Persistent stores manage data access

within the �le system, while various kinds of persistent objects encapsulate the organization,

naming, and structure of persistent data. The framework also includes �le system access classes

that provide convenient interfaces to persistent objects. Using subclasses of PersistentStore and

PersistentObject and several application interface classes, I and other Choices project team

members have built various �le systems. These �le systems include some stream-oriented �le

systems, a record-oriented �le system, a distributed �le system, a persistent object store, and

several special-purpose �le systems.

After introducing the problems of current �le system models, de�ning terminology, and

surveying related work, this thesis presents the Choices �le system framework, discusses how

the framework can be extended, and describes some of the �le systems built using the framework.

iii

To my son Jeremy

iv

Acknowledgements

I thank my advisor, Professor Roy Campbell, for his suggestions, for analysis of my work on

Choices , for his criticisms and clari�cations of my descriptions of my work, and for obtaining

funding for the Choices project. I thank Professor Ralph Johnson for teaching me much about

object-oriented languages and object-oriented programming. Besides Roy and Ralph, I thank

the other members of my committee: Daniel Reed, Dennis Mickunas, and Tony P. Ng.

I thank Vince Russo for suggesting that I develop a �le system for Choices , for invaluable

help in the design and requirements of the �le system, and for doing much of the early work on

Choices .

I also acknowledge the help I received from the students with whom I worked on the Choi-

ces project: Je� Biesiadecki, John Coolidge, Dave Dykstra, Gadi Freedman, Bjorn Helgaas,

Nayeem Islam, Gary Johnston, Panos Kougiouris, Doug Leyens, Lee Lup Yuen, Je� Mantei,

Gary Murakami, Amit Parghi, Anna Salzberg, Aamod Sane, Rajendra Singh, See-Mong Tan,

Dan Weber, Lun Xiao, and Johnny Zweig.

Several people, including Mike North, Steve March, and Dave Raila, kept the wide variety

of computers that I used up and running. I am grateful that they performed so many tasks

that research assistants are usually expected to do.

I thank many of the non-academic sta� members who work for the Department of Computer

Science, especially Anda Harney.

I thank the National Science Foundation, NASA, and AT&T for generously supporting the

projects I worked on while at the University of Illinois.

Finally, I owe my deepest gratitude to my wife, my parents, and my wife's grandmother.

v

Table of Contents

Chapter

1 Introduction : 1

2 Background : 4

2.1 File System Terms and Concepts : 4

2.1.1 Access Protocols : 5

2.1.2 Naming : 6

2.1.3 Operations : 6

2.1.4 Protection : 7

2.1.5 Attributes : 8

2.1.6 Other Terms : 8

2.1.7 Summary : 9

2.2 Object-Oriented Programming Terms and Concepts : : : : : : : : : : : : : : : : 9

2.2.1 Data Encapsulation : 10

2.2.2 Data Abstraction : 10

2.2.3 Interface and Code Sharing : 10

2.2.4 Polymorphism : 11

2.2.5 Design Sharing : 11

2.2.6 Summary : 12

3 Related Work : 13

3.1 Survey of File Systems : 13

3.1.1 Record File Systems : 13

3.1.2 Byte-Stream File Systems : 14

3.1.3 Object Storage Systems : 15

3.1.4 Distributed File Systems : 18

3.1.5 Summary : 19

3.2 Approaches to File System Design : 19

3.2.1 File System Standards : 20

3.2.2 Extensible File Systems : 20

3.2.3 Software Frameworks : 21

3.2.4 Summary : 25

4 File System Abstractions : 27

4.1 UNIX File Systems : 28

4.1.1 The Application Interface Layer : 28

vi

4.1.2 The Persistent Object Layer : 32

4.1.3 The Storage Management Layer : 35

4.2 The MS-DOS File System : 37

4.2.1 The Application Interface Layer : 37

4.2.2 The Persistent Object Layer : 38

4.2.3 The Storage Management Layer : 39

4.3 File Types in the VMS File System : 40

4.3.1 Sequential Files : 41

4.3.2 Relative Files : 41

4.3.3 Indexed Files : 42

4.4 Summary : 43

5 File System Framework : 44

5.1 Examples of the Framework : 44

5.1.1 A Concrete Example : 46

5.1.2 An Abstract Example : 48

5.2 Components of the Framework : 51

5.2.1 Storage Devices : 52

5.2.2 Persistent Objects : 58

5.2.3 Storage Device Organization and Sharing : : : : : : : : : : : : : : : : : : 61

5.2.4 Naming : 64

5.2.5 File Data Structures : 67

5.2.6 Application Interface Objects : 75

5.2.7 Protection : 81

5.3 Extensions to the Framework : 82

5.3.1 File Data Structures : 83

5.3.2 Application Interface Objects : 88

5.4 Constraints on the Framework : 89

5.5 Summary : 91

6 Building Concrete Subclasses : 93

6.1 Subclassing PersistentStores : 94

6.2 Subclassing PersistentObjects : 98

6.3 Subclassing PersistentStoreContainers : 99

6.4 Subclassing BlockAllocators : 103

6.5 Subclassing PersistentStoreDictionaries : 104

6.6 Subclassing Other Kinds of PersistentObjects : 107

6.7 Summary : 108

7 Performance : 110

7.1 File Access Operations : 111

7.2 File I/O Operations : 111

7.3 Summary : 113

vii

8 Conclusions : 114

8.1 Evolution of the Framework : 114

8.1.1 UNIX-Like File Systems : 114

8.1.2 Stream-Oriented File Systems : 115

8.1.3 An Object-Oriented File System Framework : : : : : : : : : : : : : : : : : 116

8.2 Software Engineering Bene�ts : 117

8.2.1 Reusability : 117

8.2.2 Portability : 117

8.2.3 Maintainability : 117

8.2.4 Customizability : 118

8.2.5 Extensibility : 118

8.3 Summary : 119

8.4 Future Work : 120

Appendix

A Source Code : 121

A.1 Selected PersistentStore Operations : 122

A.2 Selected Disk Operations : 124

A.3 Selected File Operations : 125

A.4 Selected PersistentStoreContainer Operations : 128

A.5 Selected BlockAllocator Operations : 131

A.6 Selected PersistentStoreDictionary Operations : 132

A.7 Selected FileSystemInterface Operations : 136

B Storage Management Examples : 138

B.1 Standard Operating System Formats : 138

B.1.1 UNIX Storage Management Systems : 138

B.1.2 The MS-DOS Storage Management System : : : : : : : : : : : : : : : : : 144

B.2 Standard Tool Formats : 146

B.2.1 The Ar File System : 146

B.2.2 The Tar File System : 147

B.2.3 The Mail File System : 149

B.2.4 The COFF File System : 151

B.3 A Remote File System : 153

B.4 A General File System : 154

B.5 Summary : 156

C Using a Persistent Object Store : 158

C.1 The POLExpression Class : 159

C.2 Subclasses of POLExpression : 160

C.3 A Sample Program : 162

C.4 Summary : 163

C.5 Class Declarations : 165

Bibliography : 170

viii

Vita : 178

ix

List of Tables

3.1 Approaches to File System Design : 26

7.1 File Access Operation Measurements : 111

7.2 Data Access Operation Measurements : 112

7.3 File Copy Measurements : 113

x

List of Figures

3.1 A Hierarchical File System : 24

5.1 Layers of the File System Framework. : 45

5.2 Concrete Example of File System Framework : 47

5.3 Abstract File System Framework : 49

5.4 File System Class Hierarchy : 51

5.5 Class Declaration: PersistentStore : 53

5.6 Class Declaration: Disk : 56

5.7 Class Declaration: File : 57

5.8 Class Declaration: PersistentObject : 60

5.9 Persistent Object Class Hierarchy : 60

5.10 Class Declaration: PersistentStoreContainer : 62

5.11 Class Declaration: BlockAllocator : 64

5.12 Class Declaration: PersistentStoreDictionary : 66

5.13 Class Declaration: SymbolicLink : 67

5.14 Persistent Array Class Hierarchy : 69

5.15 Class Declaration: PersistentArray : 70

5.16 Class Declaration: PersistentCharArray : 70

5.17 Class Declaration: PersistentIntArray : 71

5.18 Class Declaration: RecordFile : 72

5.19 Class Declaration: FileIndex : 73

5.20 Class Declaration: AutoloadPersistentObject : 75

5.21 Class Declaration: MountAssociation : 76

5.22 Class Declaration: MountTable : 77

5.23 Class Declaration: FileSystemInterface : 78

5.24 Class Declaration: RecordStream : 80

5.25 Class Declaration: PersistentArrayStream : 81

5.26 Record Structuring Class Hierarchy : 83

5.27 Class Declaration: FixedRecordFile : 84

5.28 Class Declaration: VariableRecordFile : 85

5.29 Class Declaration: RelativeRecordFile : 85

5.30 Class Declaration: IndexedRecordFile : 87

5.31 Record Stream Class Hierarchy : 88

5.32 Class Declaration: FixedRecordStream : 88

5.33 Class Declaration: VariableRecordStream : 89

5.34 Class Declaration: IndexedRecordStream : 90

xi

6.1 Persistent Store Class Hierarchy : 94

6.2 Function De�nition: ExampleFile::read : 95

6.3 Function De�nition: ExampleFile::write : 96

6.4 Function De�nition: ExampleConstructor : 99

6.5 Persistent Store Container Class Hierarchy : 100

6.6 Block Allocator Class Hierarchy : 103

6.7 Persistent Store Dictionary Class Hierarchy : 104

A.1 Function De�nition: PersistentStore::asA : 122

A.2 Function De�nition: PersistentStore::copy : 123

A.3 Function De�nition: Disk::read : 124

A.4 Function De�nition: Disk::write : 124

A.5 Function De�nition: File::read : 125

A.6 Function De�nition: File::write : 125

A.7 Function De�nition: File::basicRead : 126

A.8 Function De�nition: File::basicWrite : 127

A.9 Function De�nition: PersistentStoreContainer::open : : : : : : : : : : : : : : : : 128

A.10 Function De�nition: PersistentStoreContainer::create : : : : : : : : : : : : : : : : 129

A.11 Function De�nition: PersistentStoreContainer::rootDictionary : : : : : : : : : : : 129

A.12 Function De�nition: PersistentStoreContainer::close : : : : : : : : : : : : : : : : 130

A.13 Function De�nition: PersistentStoreContainer::synchronize : : : : : : : : : : : : : 130

A.14 Function De�nition: BlockAllocator::allocate : 131

A.15 Function De�nition: BlockAllocator::free : 131

A.16 Function De�nition: PersistentStoreDictionary::associations : : : : : : : : : : : : 132

A.17 Function De�nition: PersistentStoreDictionary::keys : : : : : : : : : : : : : : : : 132

A.18 Function De�nition: PersistentStoreDictionary::create : : : : : : : : : : : : : : : 133

A.19 Function De�nition: PersistentStoreDictionary::add : : : : : : : : : : : : : : : : : 134

A.20 Function De�nition: PersistentStoreDictionary::open : : : : : : : : : : : : : : : : 134

A.21 Function De�nition: PersistentStoreDictionary::remove : : : : : : : : : : : : : : : 135

A.22 Function De�nition: FileSystemInterface::pathOpen : : : : : : : : : : : : : : : : 136

A.23 Function De�nition: FileSystemInterface::�ndDictionary : : : : : : : : : : : : : : 136

A.24 Function De�nition: FileSystemInteface::basicFindDictionary : : : : : : : : : : : 137

B.1 Using Ar File System Classes within the Framework : : : : : : : : : : : : : : : : 148

B.2 Using Mail File System Classes within the Framework : : : : : : : : : : : : : : : 150

B.3 Using COFF File System Classes within the Framework : : : : : : : : : : : : : : 152

C.1 Persistent Object Language Class Hierarchy : 159

C.2 Example of User-de�ned Persistent Objects. : 162

C.3 Persistent objects in a parse tree for factorial(7) : : : : : : : : : : : : : : : : : 164

C.4 Class Declaration: POLExpression : 165

C.5 Class Declaration: POLInteger : 166

C.6 Class Declaration: POLString : 166

C.7 Class Declaration: POLBuiltin : 166

C.8 Class Declaration: POLExpressionList : 167

C.9 Class Declaration: POLIfExpression : 167

C.10 Class Declaration: POLLambda : 168

xii

C.11 Class Declaration: POLApply : 168

C.12 Class Declaration: POLVariable : 169

xiii

Chapter 1

Introduction

File systems are highly visible components of operating systems that store, retrieve, organize,

name, structure, and protect a computer system's persistent data[BS88, PS85]. They determine

a user's perspective of persistent data, allow e�ective utilization of storage devices, protect data

from unauthorized access or destruction, and profoundly a�ect the performance of programs.

As advances are made in the areas of computer architecture and programming languages, new

demands are placed on �le systems. These demands often lead to changes in the models that

determine the construction and usage of �le systems. Currently various models of �le systems

exist, including stream-oriented[Tho78, MJLF84, Nor85], record-oriented[Dem88, Sha91], and

object-store[ABCM83, AG89a, MG89, SGM89]. However, rather than being general models of

�le systems, these models are closely tied to speci�c programming languages and environments;

rather than being based on abstract frameworks, these models are usually de�ned by concrete

implementations. The lack of generality in these models gives a narrow perspective of �le

systems and leads to incompatibilities between systems. Basing models on implementations

makes them less
exible and less extensible. Together these de�ciencies indicate the need for a

model of �le systems that has the following characteristics:

� simplicity | the model is composed of a small set of orthogonal abstractions,

� generality | existing �le systems can be mapped to the model, and

� extensibility | new components can be easily added to the model.

1

In this thesis I show that one can construct a simple, general, extensible model of �le systems

by presenting an object-oriented framework that contains a few powerful persistent storage

abstractions. I further show that system programmers can design and build a wide variety of

�le systems within this framework.

Thus the three major contributions of this thesis are:

� A uni�ed model of �le systems. The following types of �le systems are all modeled

using the same set of components: stream-oriented, record-oriented, and object-oriented.

The model also supports customized and distributed �le systems. This has several ad-

vantages that include supporting the classi�cation of various types of �le systems and

providing more consistent application interfaces.

� A practical framework for �le system construction. Not only can the framework

presented in this thesis classify existing systems, but it can also be used to design and build

e�cient implementations of those systems. (All �le systems described in Appendix B are

built from the same classes of components.) Furthermore, it provides an excellent test-bed

for experimenting with new combinations of �le system algorithms and data structures.

� A �le system incorporating many popular interfaces and data structures. Com-

patibility with existing standards greatly eases the initial use of new computer systems.

The Choices �le system framework provides two important kinds of compatibility. First,

its application interface allows programmers to use familiar �le system operations. Sec-

ond, its internal data structures support the direct use of many common types of �les and

disk formats.

Thus, this thesis contributes to the �elds of both software engineering and operating systems.

I chose an object-oriented approach to modeling �le systems because of the bene�ts of the

following object-oriented techniques: data encapsulation, data abstraction, inheritance, and

polymorphism[Rus91]. Data encapsulation isolates an object's behavior from its representation.

Data abstraction classi�es and describes the behavior shared by a set of objects[GR83, Str86].

Inheritance allows classes to share structural and behavioral descriptions and supports hierar-

chies of classes[Weg87]. Polymorphism allows a particular operation to be applied to objects of

various types[Dig86, Nie89].

2

To demonstrate the framework presented in this thesis, I have developed a portable, ex-

tensible �le system prototype that includes a hierarchy of abstract and concrete �le system

classes. Besides demonstrating the characteristics of the framework, the prototype serves as

the persistent storage system for the Choices family of operating systems, and it has been used

as the basis of operating system class assignments and projects.

The remainder of this thesis is organized as follows. Chapter 2 provides background infor-

mation and terminology. Chapter 3 surveys related �le system models and approaches to �le

system designs. Chapter 4 presents abstractions found in some common �le systems. Chapter 5

introduces the framework, its abstractions, and its constraints. Chapter 6 discusses extending

the framework by building concrete subclasses. Chapter 7 gives some performance measure-

ments of systems built using the framework. Chapter 8 draws conclusions about the work

presented here and suggests how the framework can be used for further �le system research.

Appendix A provides pseudo-code for many of the operations discussed in Chapters 5 and

6. Appendix B describes the concrete subclasses of systems built using the framework. And

Appendix C presents an example application of a persistent store built using the framework.

3

Chapter 2

Background

This chapter provides necessary background information for the rest of the thesis by de�ning

terms and discussing concepts of �le systems and object-oriented programming.

2.1 File System Terms and Concepts

Data is persistent if its lifetime exceeds a single execution of a program. A �le is a collection

of persistent data, called contents, and a set of attributes. A �le system is the program that

controls the access to and manipulation of sets of �les. The term \�le system" can also be used

to refer to the storage occupied by a set of �les[Tho78]. To avoid this ambiguous usage, I will

use the term �le container for a collection of �les and their storage. Throughout this thesis,

any physical storage device that provides random access to persistent data will be called a disk.

The primary purpose of a �le system is to store and manage data e�ectively[BS88] and

reliably[Tan86]. Various data storage media present widely di�erent hardware interfaces; �le

systems present abstract interfaces that hide these di�erences. To support time-sharing and

multi-tasking computers, �le systems permit storage media sharing by organizing devices into

exible, dynamic sets of logical storage devices: �les. Thus, from the perspective of application

programs, �les can be viewed as collections of persistent data, and, from the perspective of

low-level system code, they can be viewed as logical storage devices. In an environment with

�le sharing, naming of �les becomes crucial; thus �le systems must provide mechanisms for

attaching useful names to �les. Likewise, �le sharing by multiple users requires mechanisms

that protect data from accidental or malicious corruption and from unauthorized access. Finally,

4

the performance of a �le system greatly a�ects the e�ciency of the computer system that uses

it as its primary data storage and management mechanism.

2.1.1 Access Protocols

Traditional �le systems provide either a record-oriented or a stream-oriented interface that

application programs use to access �les.

Record-oriented �le systems divide �les into records. A record is the smallest datum that

can be manipulated by a record-oriented �le system. Records can have either a �xed or variable

length. Access to records in a �le can be organized in several ways[Dem88, Sha91]: sequential

�les allow access to consecutive records, direct �les allow access to records by a record id

number, indexed �les allow access to records by an associated key value, and hierarchical �les

allow access to records in a tree organized by key values. Common implementations of these

access methods include: ISAM[HS82], which provides both indexed and sequential access, and

B-Trees, which are hierarchical �les that have e�cient indexing and support for sequential

access[HS82].

Stream �les can be viewed as sequential, direct, �xed-length record �les with single-byte (or

single-word) records. Stream-oriented systems are simple and have few access functions; record-

oriented systems are more complex and have more, highly-parameterized access functions.

Besides traditional �le systems, some operating systems provide object-oriented �le sys-

tems, also called object stores [SGM89, MG89] or object-oriented databases[FAC

+

89, KBC

+

89],

which present storage as a collection of persistent objects. These persistent objects resemble

the objects provided by an object-oriented programming language, except that their lifetimes

exceed a single execution of a program[AG89a, RCS89, ABCM83]. Object stores exhibit several

features not found in traditional �le systems: persistent objects can provide many operations

unrelated to data storage and retrieval, they can be loaded into memory and written back to

secondary storage without being explicitly opened or closed, and they can directly refer to other

persistent objects.

5

2.1.2 Naming

A �le identi�er is a tuple of values

1

that uniquely names a �le within a computer system. Files

are given symbolic names by placing their identi�ers in one or more dictionaries (also called

directories). A dictionary is a mapping from symbolic names to �le identi�ers. Dictionaries

themselves can be considered �les.

Systems that allow multiple dictionaries to refer to a single �le identi�er (e.g. UNIX[Tho78])

use the number of these references, also called links, to determine the lifetime of a �le. When

a �le has no links, its contents are deleted, and its storage is reclaimed.

Unlike object stores, which allow persistent objects to have direct inter-object references,

traditional stream and record-oriented systems allow only dictionaries to refer directly to �les.

2.1.3 Operations

To support necessary �le manipulation and management, �le systems provide operations [Dei84,

Org87] that:

� create and name a new �le or overwrite an existing �le (create),

� destroy the attributes and contents of a �le (delete),

� change a symbolic name referring to a �le (rename),

� create another symbolic name referring to a �le (link),

� remove a symbolic name referring to a �le (unlink),

� gain access to a �le (open),

� relinquish access to a �le (close),

� inspect the attributes of a �le,

� change the attributes of a �le,

� locate a record within a �le (seek),

1

For example, an ordered pair of integers identifying a �le container within a computer system and a �le index

within the container.

6

� retrieve one or more records of a �le (read),

� alter one or more records of a �le (write or update),

� add one or more records to the end of a �le (write or extend), and

� iterate over the names in a dictionary.

These operations can be grouped into those that operate on whole �les: create, delete,

rename, link, unlink, open, close, inspect attributes, and change attributes, and those that

control access to portions of a �le's contents: seek, read, write, update, and extend. More

complex �le systems provide more operations, including those that insert and delete individual

records, which operate only on �les that have a record organization. Not all users should

be allowed to perform all operations on all �les; therefore, �les and their contents must be

protected.

2.1.4 Protection

File systems, except for primitive or single-user systems, protect �les and their contents by

requiring ownership of �les and restricting access to various groups of users. These restrictions

can be imposed using various concrete implementations of an abstract protection mechanism

called an access control matrix [Tan86, Dei84]. In the access matrix model, programs execute

within a domain, which is a set of pairs of access rights and objects. Each right allows programs

within the domain to perform a single operation or set of operations on the associated object.

For example, a domain could have the right to read one �le, the right to change the attributes

of another �le, and the right to both read and write a third �le. A complete access matrix

contains a row for each domain and a column for each object. Each element in the matrix

contains the rights of the domain for the object.

For space e�ciency, access control matrices are commonly implemented using either access

control lists or capability lists[Tan86]. An access control list represents a column of an access

control matrix. Each list corresponds to an object and contains an element for each domain

that has some rights to access the object. The elements of the access control list are the rights

of the domain for the object. A capability list represents a row of an access control matrix.

Each list corresponds to a domain and contains an element for each object that the domain has

7

some rights to access. As with the elements of access control lists, the elements of the capability

list are the rights of the domain for the object.

File systems often use a combination of access control lists and capability lists. Access

control lists are ideal for protecting objects in secondary storage while they are not being used,

whereas capability lists are more e�cient for objects that are being accessed by one or more

domains.

2.1.5 Attributes

File attributes describe a �le and its contents. The following are common �le system attributes:

� the unique �le identi�er,

� the amount of data (in bytes, blocks, or records),

� the type (e.g stream-�le, record-�le, dictionary, or object-class),

� data format (e.g. byte ordering,
oating point format, record layout),

� ownership information,

� access permissions, and

� various operation timestamps.

Within this thesis, a �le name stored in a dictionary will not be treated as a �le attribute.

Record-oriented systems maintain additional attributes for each �le[Org87], and object-oriented

systems allow users to specify additional �le attributes[Flo88, CSG

+

88].

2.1.6 Other Terms

Systems designers employ various techniques to increase the performance, simplify the man-

agement, and increase the reliability of �le systems. The following paragraphs give some of the

common terminology for these techniques.

To optimize performance, �le systems commonly provide a bu�er cache[Bac86, NWO88], a

section of primary memory that holds the most recently read or written data, ormemory-mapped

�les[RC89], which use the virtual memory provided by an operating system to cache recently

8

accessed data. Other systems cache disk tracks[Tan86] or read a whole �le into memory when it

is �rst accessed[HKM

+

88]. While bu�er caches and memory-mapped �les help overcome delays

caused by mechanical parts of disks, these delays still dominate �le I/O times. To reduce disk

delays, �le systems can use a technique called disk or �le striping [DS89] in which consecutive

blocks of a �le are allocated on separate disks.

To ease �le management within a group of computers, distributed �le systems[SGK

+

85,

RFH

+

86, HKM

+

88, WPE

+

83] allow computers to share �les transparently. A �le server is

a computer that provides other computers, called clients, access to its �les. To ensure �le

consistency, distributed �le systems can support immutable �les[GNS88], whose modi�cation

results in the creation of new �les, or they can use various caching policies[NWO88].

2.1.7 Summary

File systems provide an abstract interface to support the storage, retrieval, organization, shar-

ing, naming, and protection of persistent data. They can present various kinds of interfaces,

including:

� unstructured data (stream-oriented),

� structured data (record-oriented), and

� encapsulated structured data (object-oriented).

Dictionaries map external, symbolic names to internal �le identi�ers. File systems support both

operations that work on whole �les and operations that work on a portion of a �le's contents.

Various mechanisms protect persistent data by limiting the set of operations a program is

allowed to invoke on particular �les. Besides storing the contents of a �le, �le systems store

descriptions of a �le, including its size, type, ownership, and access permissions. To improve

performance, �le systems cache recently accessed data, and to simplify management of data

within a group of computers, �le servers allow other computers to access their �les transparently.

2.2 Object-Oriented Programming Terms and Concepts

Object-oriented systems exhibit several software engineering bene�ts through the use of sev-

eral programming techniques. The bene�ts include the enhanced reusability, maintainability,

9

portability, customizability, and extensibility of software[Rus91]. The techniques include data

encapsulation, data abstraction, interface and code sharing, polymorphism, and design sharing.

2.2.1 Data Encapsulation

An object is a software entity that consists of a set of state data and a set of operations on the

data[Weg87, Rus91]. Objects support data encapsulation by enforcing the use of operations to

e�ect all state changes[Dig86, Nie89]. Data encapsulation helps software designers decompose

systems into objects by insulating other objects from changes in the structure of the state data.

In Smalltalk[GR83], invoking an operation is called sending a message to an object, and

the code invoked in response to a message is called a method. In C++[Str86], methods are called

member functions. Public member functions de�ne an object's external interface, while public

and private member functions

2

de�ne an object's behavior. An object's state is composed of

its instance variables[Nie89], which are also called the data members [Str86] of the object.

2.2.2 Data Abstraction

A class is a template for building similar objects[Nie89]. A class speci�es the instance variables

and operations that all objects belonging to the class will have. Classes support data abstraction

by describing the structure and behavior shared by a set of objects[GR83, Str86]. Classes allow

programmers to extend the set of builtin types provided by the programming language. Classes

di�er from traditional user-de�ned type mechanisms because they support the notion of sub-

types[Nie89]. A class de�nes a sub-type of a second class if instances of the �rst class can be

used anywhere that instances of the second class could be used.

2.2.3 Interface and Code Sharing

Classes can belong to a hierarchy and share structural and behavioral descriptions using inheri-

tance. Within a hierarchy a subclass can inherit from one or more parent classes, or superclasses.

If subclasses have more than one superclass, the hierarchy uses multiple inheritance; otherwise,

it uses single inheritance.

2

Within this thesis, no distinction will be made between the private and protected keywords of C++.

10

Some classes serve only to specify an interface, i.e. a set of operations, that subclasses can

share. These classes are called abstract classes, and they cannot have any instances[GR83].

Other classes implement the speci�ed interface of an abstract superclass. These classes are

called concrete classes. In practice, many classes specify both an interface for subclasses and

provide an implementation of that interface.

Though the framework presented in this thesis uses classes, instances, instance variables,

and subclassing, not all object oriented programming languages use these mechanisms. The

Self Language[US87] achieves data encapsulation, data abstraction, interface sharing, and code

sharing using a simpler set of mechanisms. In Self, classes are not distinguished from other

objects; instead, any object can serve as a prototype for other objects. Furthermore, Self does

not distinguish between accessing an instance variable and sending a message to an object.

Inheritance from objects other than classes is often called delegation[Ste87, Nie89].

2.2.4 Polymorphism

Object-oriented languages provide polymorphic functions, which can be applied to objects of

various types[Dig86, Nie89]. Polymorphism allows software to be more general (applicable to

more kinds of data) and extensible (applicable to as yet unspeci�ed data).

Polymorphism is supported by the late binding of function calls. The C++ mechanism that

provides late binding is called a virtual function call[Str86]. Each instance of a class that de�nes

or inherits virtual functions has a pointer to a virtual function table, called a vtable. When a

virtual function is invoked on an object, the appropriate function is dispatched by retrieving

the address of the function from the vtable.

2.2.5 Design Sharing

The most important form of software reuse is reusing the architecture or functional decom-

position of systems within the same application domain[Deu89]. Abstract classes are reusable

designs for components of a system[WBJ90], and frameworks are reusable designs for entire

systems or subsystems.

A framework is a collection of abstract and concrete classes and a design for how to combine

objects together to build a working system[JR91]. Such a working system, a set of cooperating

objects that are an instantiation of a framework, is called an ensemble[JR91]. Frameworks

11

describe how a system is decomposed[Deu89] and how its components interact. They allow not

only the reuse of design and but also implementation[WBJ90].

Frameworks are similar to an architectural speci�cation for a system, but polymorphism

allows the components to belong to various related classes instead of being restricted to a single

data type. Frameworks are useful for both building and characterizing systems.

Frameworks often start as single solutions to problems within speci�c domains. If they are

carefully extended and revised, they can serve as solutions to many or most of the problems

within their domains[JR91]. Thus they codify knowledge about a problem domain by describing

the common aspects of the solutions[JR91]. By being designed for re�nement, they support

iterative research and development.

2.2.6 Summary

Advocates of object-oriented programming proclaim that the use of the �ve techniques discussed

in this section leads to the following software engineering bene�ts[JR91, Rus91, Nie89]:

� Reusability|interfaces and code can be shared between classes in a hierarchy; also, de-

signs of similar classes can be shared even when there is no inheritance relationship.

Frameworks support the reuse of the designs of entire systems.

� Portability|data encapsulation helps to isolate machine-dependencies.

� Maintainability|the modularity provided by objects not only helps to isolate machine-

dependencies, but also helps to keep changes in one module from a�ecting another.

� Customizability|systems can be tailored to suit the needs of a particular application

without including features needed by other applications.

� Extensibility|new features can be added more easily to a system that has an appropriate

set of abstractions and supports polymorphism.

12

Chapter 3

Related Work

This chapter is divided into two sections. The �rst section brie
y surveys various types of �le

systems that are currently in use or being developed. The second section discusses approaches

to system software design, especially �le system design.

3.1 Survey of File Systems

This section surveys three categories of interfaces for �le systems: record-oriented, byte-stream-

oriented, and object-oriented. It also discusses the distribution of persistent data across several

machines and alternative ways of utilizing storage media.

3.1.1 Record File Systems

In early computer systems, programs had to communicate directly with hardware I/O devices.

To simplify the task of writing application programs, �le systems, which provide abstract models

of I/O devices, were developed to match models needed by programming languages[Dem88].

Many operating systems, including Digital Equipment Corporation's (DEC) VMS[Sha91]

and International Business Machine's (IBM) System 38 and OS 400[Dem88], provide record-

oriented �le systems. The records in these systems correspond to programming language con-

structs like PL/1[Hug79] or C[KR78] structures or COBOL[SS79] or Pascal[JW75] records.

These record-oriented systems all support many access modes, indices and record formats. The

VMS system supports sequential, relative, and indexed �le organizations, and sequential and

13

random access modes. The VMS �le system also supports multiple versions of a �le with the

same name.

1

By supporting and optimizing commonly performed �le manipulation operations and by

matching the �le system models used in popular programming languages, record-oriented sys-

tems can help to increase the productivity of both programmers and computer users. Neverthe-

less, record-oriented systems are often complex and lead to incompatibilities between programs

using di�erent �le types. Some of these complexity and incompatibility problems, plus the

rising popularity of programming languages like C[KR78], have led system developers to move

towards stream-oriented �le systems.

3.1.2 Byte-Stream File Systems

UNIX[Bac86] �le systems are arguably the most important examples of stream-oriented �le

systems. Simplicity characterizes the standard System V UNIX �le system[Tho78] model.

UNIX �les are sequences of bytes with random access and a simple interface: read, which

retrieves a consecutive sequence of bytes; write, which stores a consecutive sequence of bytes;

and lseek, which sets the current �le o�set. Because the operating system does not explicitly

require record structures for �les, the output from most UNIX tools can be the input to other

UNIX tools. Nevertheless, any tool can impose a structure on a �le. The random access feature

allows even complex record structures to be imposed on speci�c �les when needed. Within each

�le container, �les are named by a set of special �les called directories, which are organized as

a single hierarchy.

2

Stream �le systems are highly
exible and have few restrictions, yet they place an extra

burden on the programmer. Being untyped and unstructured, stream �les result in replication of

common �le manipulation code in application programs and missed optimizations that would

take advantage of an internal �le structure. Furthermore, untyped �les do not identify the

format of the data they contain, and this can cause problems in a distributed environment

where byte ordering and
oating point format can vary from machine to machine. Treating all

�les as byte-streams is analogous to treating all primary memory as sequences of bytes.

1

See Section 4.3 for more information on the VMS �le system.

2

See Section 4.1 for more details on UNIX �le systems.

14

3.1.3 Object Storage Systems

Instead of containing collections of unencapsulated data structures, object storage systems

contain data encapsulated as objects of a particular programming language. Object storage

systems have evolved from simple workspaces, to multiuser persistent object stores, to object-

oriented extensions of conventional �le systems, to sophisticated databases.

3.1.3.1 Workspaces

A workspace is a collection of persistent data that contains the complete state of a program

between successive invocations. The individual data objects stored within a workspace are

inaccessible outside the program that created the workspace. An early use of the concept of a

workspace can be found in the COMIT string processing language[Sam69]. Other examples of

systems that use workspaces include MIT Scheme, APL, and Smalltalk[GR83]. The workspace

in Smalltalk is called an image.

Workspaces simply and conveniently support object-oriented programming language envi-

ronments; however, they are designed to be single-user stores, not integrated with the rest of

the data stored in a �le system, and limited in the size and number of objects stored.

3.1.3.2 Persistent Object Stores

Persistent object stores remove the single-user and size limitations of workspaces. Though

not as simple as workspaces, they are complete �le systems, since they provide data sharing,

naming, and protection.

The PS-algol programming language[ABCM83] provides a persistent heap for all data types,

including �rst-class procedures, used within the language. To determine which objects are

persistent, PS-algol uses the concept of a database, which is the transitive closure of all objects

reachable from a speci�ed object[Bro89]. PS-algol also supports transactions that allow multiple

readers or a single writer to access a database. Other than the concepts of databases and

transactions, persistence is transparent to PS-algol programs.

Data management in the Comandos project[MG89] is similar to that of the Choices project

and is inspired by the Eden[PLNZ88], SOS[SGM89], and Clouds[PD88] projects. The Coman-

dos Storage System comprises a set of containers, each of which contains a set of segments.

15

Commandos supports the following features for persistent objects: user de�ned types, cluster-

ing of objects within a segment, distributed object access, queries on objects, and management

of classes. Comandos is designed for distributed workstation computing that exclusively uses

persistent objects for data storage.

The EXODUS project[CDRS89] at the University of Wisconsin has built an object store

for an extended version of C++ called E[RCS89]. See Section 3.2.3.2 for more details about

EXODUS. EXODUS uses an untyped storage system. A group at AT&T Bell Laboratories is

developing a similar object store for an extended version of C++ called O++[AG89b] as part of

its Object Development Environment[AG89a]. The SOS operating system project[SGM89] has

built a persistent object store for yet another extended version of C++. Like EXODUS, SOS

used an untyped storage system.

The ET++ project[GWM89] supports object storage in �les by converting the objects to a

portable, textual form. This is similar to the \�leOut" technique used in Smalltalk to export

objects from a workspace. While useful for simple prototypes, storing objects in textual form has

several limitations, including poor performance and problems handling inter-object references.

A common feature of all the object stores presented here is that they are restricted to a

speci�c programming language (or dialect) and model of data storage and management.

3.1.3.3 Object-Oriented File Systems

In contrast to persistent object stores, which are designed to support persistence in a partic-

ular programming language, the object-oriented �le systems described below are hybrids of

traditional �le systems and object storage.

The Portable Common Tool Environment (PCTE)[Flo88], developed at the Software Engi-

neering Research Centrum in the Netherlands, includes a simple object-oriented implementation

of a UNIX �le system. It extends the UNIX �le system by allowing named attributes to be

attached to classes of �les. It also adds the concept of one-to-many links between �les. These

attributes and links can be inherited by subclasses. The contents of a PCTE �le are accessed

as a byte-stream, and the protection system in PCTE is exactly the same as in UNIX. The

extended PCTE �le system model is simple and partially extensible; however, the resulting

model is neither general nor fully extensible, since it only presents a UNIX interface to a �le's

contents.

16

The Gypsy (more recently called BiiN) operating system[CSG

+

88] is an object-oriented

extension of the UNIX operating system developed jointly by Siemens and Intel. It provides an

extended UNIX �le system built on object storage. Each object stored in the �le system has a

type, which can be a builtin type (like a regular �le or a directory) or a user-de�ned type. User-

de�ned types allow inter-object references and user-de�ned operations. BiiN also integrates

version numbers with the naming of �les, and it supports access-lists for �le protection.

3.1.3.4 Object-Oriented Databases

The systems described in this section are prototypes that represent active research in the area

of object-oriented data storage and management. Since they closely resemble object stores,

their features are worth considering when building a general �le system model.

Hewlett-Packard (HP) has built a prototype object-oriented Database Management System

(DBMS), Iris, that is based on a relational storage manager[FAC

+

89]. Iris o�ers various inter-

faces including: Object SQL, which is an extension to conventional SQL; a \loosely-coupled"

interface to LISP, which treats Iris as a set of objects; and a \tightly-coupled" LISP interface,

which is based on CLOS. Iris supports \types" that are similar to classes in most object-oriented

languages. Types are themselves objects, and they form a multiple inheritance hierarchy. Simi-

lar to C++, Iris uses special, e�cient representations for primitive types like strings and numbers.

The most novel aspect of Iris is the ability to add or remove types from existing objects.

The Microelectronics and Computer Technology Corporation (MCC) has developed an

object-oriented database, ORION, with many advanced features[KBC

+

89]. These advanced

features include: dynamic schema evolution, composite object clustering, version management,

and multimedia information management. ORION also provides query optimization and trans-

action management. As a research prototype for LISP-based, single-user workstations, ORION

serves as a vehicle for experimentation with several aspects of object-oriented data management.

In contrast to the LISP-based Iris and ORION systems, Gemstone is a Smalltalk-based,

multi-user Object-Oriented DBMS developed by Servio Logic Corporation[BMO

+

89]. Unlike

most Smalltalk systems, GemStone is designed speci�cally to support multiple, simultaneous

users, large object spaces, and large objects. For e�ciency the GemStone language, an extended

Smalltalk dialect called OPAL, provides indices on \nonsequenceable" collections of similar

17

objects. These indices are based on the structure, not the behavior of objects; this type of

indexing seems to violate the data encapsulation of object-oriented programming.

VBASE[AH87] and ONTOS from Ontologics are other examples of object-oriented database

management systems. VBASE combines an object-oriented language called COP and an object-

oriented database. ONTOS, a newer product, is an object-oriented database for C++.

3.1.4 Distributed File Systems

A major trend in �le system research is towards distributed �le systems. The goal of these sys-

tems is to support an environment of networked computers and to provide better performance.

Sun Microsystems has developed a widely-used distributed �le system, the Network File

System[SGK

+

85] (NFS) that includes a stateless server and provides e�ective �le system access

to a small group of diskless workstations. As part of its UNIX System V Release 3, AT&T has

developed a similar system, the Remote File System[RFH

+

86] (RFS) that uses a write-through

cache to enhance data consistency.

Unlike NFS and RFS, which copy individual blocks on demand, the distributed Andrew

File System[HKM

+

88] copies whole �les on demand. It also assumes client machines have local

secondary storage devices. Whereas NFS and RFS e�ciently support relatively few clients,

Andrew scales smoothly[HKM

+

88]. The Sprite File System[NWO88] is a distributed �le system

that caches data blocks on both client and server systems, provides the same level of data

consistency as RFS, and scales as well as Andrew.

The Cedar �le system from Xerox uses immutable shared (remote) �les[GNS88] and mutable

private (local) �les. Like Andrew, Cedar uses whole �le copies and local disks on each client.

Cedar also provides �le versions. The LOCUS operating system[WPE

+

83] supports a location-

transparent distributed �le system. The LOCUS �le system extends the UNIX �le system by

supporting �le replication to increase availability and performance.

All the �le systems described in this section, except for Cedar, try to duplicate UNIX

�le system semantics and concentrate on implementation and performance. These distributed

systems are presented in this section because any general model must describe characteristics

of �le systems such as distribution and data consistency.

18

3.1.5 Summary

Record-oriented �le systems simplify the task of writing application programs by providing

abstract models of I/O devices that match models needed by traditional programming lan-

guages. Complexity and incompatibility problems led system developers to move towards sim-

ple, stream-oriented �le systems. Despite their simplicity, stream-oriented �le systems place

an extra burden on the programmer, since they result in replication of common �le manipula-

tion code. Object storage systems contain data encapsulated as objects instead of containing

collections of unencapsulated data structures. They have evolved from simple workspaces to

multiuser persistent object stores and sophisticated databases. Besides designing and re�n-

ing �le system access protocols, a trend in �le system research is towards distribution, which

simpli�es data management in an environment of networked computers. Many distributed �le

systems duplicate the UNIX �le system interface but provide di�erent levels of performance

and data consistency.

3.2 Approaches to File System Design

Di�erent applications and computer architectures place di�erent requirements on �le systems.

One could try to build a single �le system to satisfy the needs of all current applications on all

computer architectures. But such an e�ort would yield a large and overly complex system, and

it would ultimately fail, since one cannot anticipate all the requirements of future applications.

Instead, one can try several approaches to satisfy the wide variety of �le system requirements:

1. allow individual operating systems to implement �le systems that are appropriate for their

intended applications and then provide a model for interoperability;

2. build
exible or extensible �le systems;

3. provide a framework that simpli�es the construction of standard and custom �le systems.

The approach taken in this thesis combines items 2 and 3, since it provides a framework for

building standard and custom �le systems that includes
exible �le systems, and it supports

extensions at run-time.

19

3.2.1 File System Standards

The standardization e�orts presented in this section help to identify �le system abstractions

and to enhance �le system interoperability, but they do not attempt to model many major

aspects of �le systems, nor do they address the design and construction of �le systems.

The International Standards Organization (ISO) has developed a File Transfer and Man-

agement (FTAM) Standard[Org87]. Currently it supports only a single, hierarchical model of

�le systems. In this version of the standard, all other types of �le systems must be mapped

into this model. Other models are planned for a future version of the standard; none of the

planned models, however, is general.

IBM has also published �le system standards called Distributed Data Management[Mac89].

DDM is designed to allow several di�erent operating systems to share �les. It uses a few

standardized �le models that closely match models found in popular high-level languages. One

goal of DDM is to require at most 2n types of �le conversions for n di�erent types of �le systems.

The Eden project at the University of Washington provided a heterogeneous, remote �le

system[PLNZ88] that makes remote �le systems, which may provide di�erent naming and access

operations, available to other computers on a network. Eden maps all �le systems into a single,

simple �le access model. Its model does not specify the structure of �les, instead it speci�es how

application programs can access �les. Applications can sequentially read and write variable-

sized, typed records. If the records in a particular �le are all the same size and type, then

applications can randomly read and write the records.

3.2.2 Extensible File Systems

Though the application interface of the UNIX �le system is
exible, its internal organization

needed changes to incorporate new types of storage like network �le systems. To solve this

problem, the Eighth Edition UNIX[ATT85] (a research version of UNIX) �le system contains

a mechanism that integrates both network and special purpose �le systems with the standard

UNIX �le system[Kil86]. Each �le system that is supported by this mechanism is given a type.

Also, each open �le has a generic inode, which contains the type of the �le, the type-independent

information about the �le, and a pointer to the type-dependent information about the �le. The

20

�le system uses the type to select which implementation of the standard operations should be

used. For example, there will be di�erent read and write operations for local and remote �les.

The addition of �le system types and generic inodes proved to be successful for integrating

both remote �le systems and custom �le system (for example, treating processes as �les[Kil86]).

Further, this mechanism was used as the basis for adding features to a commercial version

of UNIX, System V Release 3[Bac86]. While this mechanism makes the UNIX �le system

extensible, it provides neither a way to extend the application interface nor a means to structure

and reuse the internals of similar �le systems.

As mentioned in Section 3.1.3.3, the BiiN operating system provides an extensible, object-

oriented, UNIX-compatible �le system[Bii88]. Besides supporting regular UNIX �les and direc-

tories, programs can create and access networks of persistent objects that appear as conven-

tional heap-allocated objects. The BiiN �le system requires explicit passivation of objects to

force them onto secondary storage, but it supports automatic object activation that resembles

demand paging[PKD

+

90].

The operations of the BiiN �le system are polymorphic, since they can be applied to various

types of �les. The mechanism that supports these polymorphic operations, called attribute

calls, resembles the virtual function tables used by C++ programs. Though BiiN presents an

object-oriented interface to �les, it does not make e�ective use of inheritance[CSG

+

88]. BiiN

also requires special hardware support (tag bits for pointers to objects) for object access and

protection[PJC

+

90].

In contrast to the �le system types of Eighth Edition UNIX, which enable the integration

of various types of storage management, BiiN supports types for individual �les, which enable

the extension of the �le system's application interface. Neither system addresses the issue of

simplifying �le system construction.

3.2.3 Software Frameworks

Currently, many software solutions are invented to solve a particular problem and then rein-

vented by others who later try to solve similar problems. Many people, especially those who

pay for these solutions, would like software developers to bene�t from the knowledge gained

from building earlier solutions. The users of this knowledge should be able to achieve their

goals more quickly, e�ciently, and reliably. Software engineering is a popular term applied to

21

the simpli�cation of various aspects of building large and complex software systems. In a recent

paper[Sha90], Mary Shaw commented that engineering requires the codi�cation of knowledge

about a problem domain in the proper format, and that software engineering lacks proper

formats for codifying system designs. Techniques like subroutine libraries do help software

developers, but they o�er little help for system designers, since they do not help identify the

components of a system or the relationships between the components.

Nevertheless, there have been some successes in software engineering, for example, compiler

construction[Sha90]. After many years of re�ning the practice of building compilers, researchers

have developed common models and notations for describing compilers. Thus, when one starts

to design a compiler, one can reuse a standard decomposition of a compiler[ASU86] (for example,

a compiler contains several modules including a lexical analyzer, a parser, and a code generator),

and one can also use standard notations to describe the grammars accepted by some of the

components (for example, regular expressions for the lexical analyzer and context-free grammars

for the parser). Software models do not have to be complete to be useful[Sha90]|the current

state-of-the-art of compiler construction is the result of many years of research and development.

Therefore, Shaw argues that software engineering can be the result of iterative cooperation

between research and development.

3.2.3.1 Examples of Software Frameworks

Frameworks have been used successfully to support the construction of several user interfaces,

including the Model/View/Controller framework of Smalltalk-80[Gol84] and the C++-based

framework called ET++[GWM89], and graphical object editors[Vli90].

Frameworks can also be applied to operating system software. Choices is a family of object-

oriented operating systems; it is designed as a hierarchy of frameworks[CRJ87]. Besides the �le

system framework described in this thesis, Choices contains frameworks for the design of several

other subsystems, including: virtual memory[RC89, Rus91], process scheduling and synchro-

nization, exception handling[RJC88, Rus91], networking[ZJ90], device management[Kou91],

and message passing[IC91].

22

3.2.3.2 Examples of Storage Management Frameworks

The frameworks that are most closely related to the one described in this thesis support con-

struction of database management systems.

The EXODUS project provides a toolkit for building DBMS's[CDRS89]. It is designed

to enable rapid development of custom systems that support applications not well-suited to

the relational model. EXODUS di�ers from extensible DBMS's in that it allows a database

implementor to create a system customized for a particular application. EXODUS also di�ers

from the other frameworks discussed in this chapter. Instead of providing modules that can

be plugged together, it provides some
exible components (for example, a storage manager

and an extended dialect of C++) and tools to generate other components (for example, a query

optimizer generator).

At the University of Texas, researchers working on the GENESIS project analyzed the do-

main of the �le management systems[BBR

+

89], which are the storage and retrieval subsystems

for DBMS's. They observed that a mature software �eld, one that is well-understood and no

longer evolving rapidly, can be standardized and can be described by generic architectures.

These generic architectures can be built after studying existing systems, algorithms, and data

structures. Once built, they provide a design for reusing their software components.

Though they used a di�erent implementation language, C, and di�erent terminology, the

observations, techniques, and experiences of the GENESIS project resemble those described in

this thesis.

One key observation is that many decompositions of a system are inappropriate for use

as frameworks. For example, consider the decomposition of a �le system shown in Figure 3.1,

which was found in [BS88]. This example should not be used as a general framework for building

�le systems for several reasons, including:

� it does not identify the classes of components that compose a �le system;

� changes to components in one layer a�ect components in other layers;

� it does not allow for �le data encapsulated by any other types of objects besides directories;

and

� it does not abstract systems that have more than one storage management layer.

23

User

Directory
Retrieval

Basic
File

System

Physical
Organization

Methods

Device
IO

Techniques

IO
Scheduling

and
Control

Hardware

L5

L4

L3

L2

L1

Figure 3.1: A Hierarchical File System

24

The framework shown in Figure 5.3 and presented in Chapter 5 addresses these de�ciencies.

The GENESIS team members used the following techniques:

� abstract classes (called independently-identi�able objects) capture the fundamental prop-

erties of a class of objects;

� many concrete subclasses (called modules) encapsulate the implementation details of ex-

isting systems; and

� polymorphism allows various types of modules to be used by the same functions.

Some experiences common to both the GENESIS and Choices projects include:

� the development of frameworks takes much longer than the development of just a single

system;

� frameworks take much experience to develop;

� frameworks are the result of iterative design;

� frameworks allow one to quickly build custom systems; and

� frameworks do not provide solutions to problems within the domain, instead they enable

the reuse of existing solutions and experimentation with proposed solutions.

3.2.4 Summary

One could choose between various approaches when designing a general and extensible �le

system model. Figure3.1 summarizes the bene�ts of the approaches described in this section:

� �le system standards that provide a model for interoperability,

�
exible or extensible �le systems,

� frameworks that simplify the construction of �le systems.

File system standards like FTAM, DDM, and the Eden remote �le system all achieve their

goal of supporting interoperability, but they are not designed to solve the problems of the

construction or extension of storage management and �le system interfaces. Further, they only

25

Features

Approach Storage Management Application Interface Interoperability

Extend Construct Extend Construct Sets of Files Per File

Standards �

UNIX � �

BiiN � �

Genesis � �

Exodus � �

Choices � � � � � �

Table 3.1: Approaches to File System Design

allow interoperability between sets of �les on di�erent systems. They do not support di�erent

kinds of �les stored in the same collection; for example, they do not allow both System V and

BSD directories in the same disk partition.

Flexible �le systems like the Eighth Edition UNIX �le system support the extension of

the storage management subsystem through the use of the generic inode mechanism, but they

provide little support for constructing these extensions. Like the �le system standards, they

provide interoperability between di�erent kinds of collections of �les, but not di�erent kinds

of �les within the same collection. Extensible �le systems like the BiiN �le system allow pro-

grammers to extend the �le system interface, but they provide limited support for constructing

these extensions.

Others have built frameworks that support both the extension and construction of either

storage management systems (Genesis) or persistent storage interfaces (Exodus). The Choices

�le system framework, presented in this thesis, supports both the extension and construction

of both storage management systems and persistent storage interfaces. Further, it provides

interoperability of both di�erent kinds of collections of �les and individual �les within the same

collection.

26

Chapter 4

File System Abstractions

This chapter discusses some of the abstractions found in three popular �le systems. The terms

that I use are not the ones that the implementors of these systems used. Instead, I describe the

�le systems in object-oriented terms. Therefore, this chapter presents the kinds of objects that

compose these systems, including their data structures and the operations that they support.

By using the same technique to analyze the �le systems and by describing them using a common

set of terms, I lay the groundwork for showing how they can all be constructed within a single

coherent framework in Chapter 5.

The �rst set of abstractions presented are those of the UNIX �le system. Three variants of

the UNIX �le system have been implemented within the Choices �le system framework because

they are used by various computers to which Choices has been ported. Not all versions of the

UNIX operating system support all the features discussed in this chapter. See Appendix B for

details about the di�erences between them and for examples of how the framework captures

their commonalities.

The second set of abstractions are those of the MS-DOS �le system. Though many of its

data structures are fundamentally di�erent from UNIX �le system data structures, many of the

operations are similar. Therefore, one can build a model that incorporates both systems.

The third set of abstractions are the record-oriented �le interfaces of the VMS operating

system. These interfaces contain many operations that are not found in either UNIX or MS-DOS

�le systems. Nevertheless, the same model that describes stream-oriented and object-oriented

�le systems can easily describe the operations on VMS �les.

27

4.1 UNIX File Systems

The UNIX �le system presents an abstract interface that allows multiple users to access per-

sistent data and many types of hardware devices[Bac86]

1

. This support includes a hierarchical

structure for directories, mechanisms for sharing �les between users, and protection for �les

and directories. The UNIX �le system contains several layers of abstractions. The upper layer,

which I call the application interface layer , contains transient objects that present the external

interface of the �le system. The middle layer, which I call the persistent object layer , con-

tains persistent objects that are stored within the �le system. The bottom layer, which I call

the storage management layer, contains storage devices and �le control data structures. I will

describe the objects and operations in each layer, starting with the application interface layer.

4.1.1 The Application Interface Layer

Application programs access the �le system through a set of system calls. The systems calls

can be classi�ed by the type of object on which they operate: those that operate on the �le

system as a whole, those that operate on an individual open �le, and those that operate on an

individual open directory. This classi�cation of system calls implies that three classes of objects

compose the interface to UNIX applications:

1. a �le system interface object,

2. a �le stream, and

3. a directory stream.

4.1.1.1 File System Interface Operations

Most UNIX �le system operations operate on a �le system interface object. A single �le system

interface object operation can name and perform operations on all �les and directories accessible

to the computer. A directory is a special �le that contains ordered pairs (also called associations

or entries in this thesis) that map �le names to internal �le identi�ers (called inumbers). Every

directory contains at least two entries: one that maps the string \." to the inumber of the

directory itself, and one that maps the string \.." to the inumber of its parent directory. Each

1

In this analysis of the UNIX �le system, I only discuss persistent data storage.

28

disk partition contains one root directory, which maps both \." and \.." to its own inumber.

The UNIX �le system presents a hierarchical naming structure by allowing directories to contain

the names of both regular data �les and other directories.

All �le system interface operations take either one or two pathname arguments. A pathname

is a sequence of zero or more directory names followed by a single �le or directory name. The

�le system interface interprets each component of the pathname sequentially; it looks up each

component in the directory speci�ed by the previous component. Slash (\/") characters separate

the components of pathnames. The set of directory names are called the dirname, and the last

element of the pathname is called the basename. Pathnames can be either absolute or relative.

Absolute pathnames begin with a \/" character, while relative pathnames begin with any other

character. The �le system interface looks up the �rst component of an absolute pathname in

the root directory, while it looks up the �rst component of a relative pathname in the current

directory. All processes in UNIX systems share the same root directory, but processes can either

share the same current directory or have di�erent ones.

All �les and directories are owned by a single user and also belong to a group of users. For

each �le there are three types of permissions : read, write and execute. For each directory there

are also three types of permissions: read, write and search. The UNIX operating system divides

processes into three categories. The �rst category contains processes that belong to the owner

of the �le, the second category contains processes that belong to other members of the group to

which the �le belongs, and the third category contains all processes not in the �rst two groups.

Both �les and directories store nine
ags that indicate which subset of the three permissions

each of the three categories of processes has.

All �le system operations could be designed to take pathnames as arguments, but it would

be ine�cient to use many such operations repeatedly on the same �le. To make operations

such as read and write more e�cient, the UNIX �le system keeps a table of open �les. An entry

in the �le table refers to the �le's control information, which has been loaded into primary

memory. Each entry also contains a
ag that indicates the access mode speci�ed when the �le

was opened (either read-only, write-only, or read/write). For each process, the UNIX operating

system keeps a table of references to �le table entries. These tables are called �le descriptor

tables , and an integer index into these tables is called a �le descriptor .

29

The �le system interface supports �ve types of operations: �le access and creation (open

and creat), persistent changes to the name space (mkdir, rmdir, link, unlink, rename, symlink, and

readlink), temporary changes to the name space (chdir, chroot, mount, and unmount), attribute

access (stat and lstat), and protection (access, chmod, and chown).

The open operation allows programs to access the contents of a �le through a �le stream

object. It takes two arguments, a pathname and the access mode (read, write, or read/write),

and returns a �le descriptor. The creat operation allows programs to create a new �le and to

access its contents through a �le stream object. It takes two arguments, a pathname and the

nine �le permission
ags, and returns a �le descriptor that refers to a �le opened for writes

only.

The mkdir operation takes a single pathname argument and creates a directory that corre-

sponds to the given name. The rmdir operation takes a single pathname argument and deletes

the directory that it names. The link operation allows programs to create multiple names for

a �le. It takes two pathname arguments and adds an entry to the directory speci�ed by the

dirname of the second argument that maps the basename of the second argument to the inumber

of the �le speci�ed by the �rst argument. The unlink operation allows programs to remove a �le

name. It takes a single pathname argument and removes an entry from the directory speci�ed

by the dirname of the argument that maps the basename of the argument to an inumber. The

rename operation allows applications to change a name of a �le. It takes two pathname argu-

ments and atomically performs a link and an unlink operation. The symlink operation allows

programs to store a pathname in a special �le called a symbolic link. It takes two pathname

arguments and adds an entry to the directory speci�ed by the dirname of the second argument

that maps the basename of the second argument to the inumber of a �le that contains the

�rst argument. The readlink operations allows programs to retrieve the contents of a symbolic

link. Except for the readlink and lstat operations, all �le system interface operations use the

contents of symbolic names during pathname parsing. Operations that use symbolic names

during pathname parsing replace the current component of the pathname with the contents of

the symbolic link and then resume parsing the pathname.

The stat operation takes a single pathname argument and returns a data structure that

contains all of the �le's attributes. The lstat operation also takes a single pathname argument

and returns a data structure that contains the �le's attributes. If the basename of the argument

30

corresponds to a symbolic link, however, it returns the attributes of the symbolic link instead

of the attributes of the �le named by the symbolic link.

The chdir operation changes the value of a process's current working directory, while the

chroot operation changes the value of the root directory. The mount operation allows programs

to create a temporary mapping from a directory on one disk to a directory on another. It stores

these mappings in a mount table, which can be considered an auxiliary object that is used by

the �le system interface. It takes three arguments, the pathname of special �le (for example,

a disk partition), the pathname of the mount-point directory, and a
ag that allows �les to be

mounted read-only. The unmount operation allows programs to destroy a temporary mapping

from a directory on one disk to a directory on another. It takes one argument, the pathname

of special �le.

The access operation allows programs to determine which access rights they have for a given

�le or directory. It takes two arguments, a pathname and a set of access
ags. The access
ags

allow the process that invokes the operation to check for any combination of �le permissions

(either read, write and execute for regular �les, or read, write and searchfor directories). They

also allow the process to check if the �le exists. The chmod operation allows programs to change

the access rights for a �le. It also takes two arguments, a pathname and set of mode
ags. The

chown operation allows programs to change the ownership of a �le. It takes three arguments, a

pathname, a user name, and a group name.

Three variables compose the state of the �le system interface: the root directory, the current

directory, and the mount table.

4.1.1.2 File Stream Operations

A UNIX �le is a random access sequence of bytes; the application interface to �les, however, is

called a �le stream. The term �le stream is appropriate because the data retrieval and storage

operations, read and write, support sequential access as the default access mode. The operations

on �le streams include read, write, lseek, fstat, truncate, and close.

The read and write operations take three arguments: a �le descriptor, a bu�er location, and

the number of bytes to be transferred. The read operation attempts to retrieve the speci�ed

number of bytes and place them in the bu�er, and it returns the number of bytes successfully

read. The write operation attempts to store the speci�ed number of bytes and place them in the

31

bu�er, and it returns the number of bytes successfully written. Both operations use a current

�le o�set to support sequential access. Programs that require random access to �le streams

can reposition the �le o�set by invoking the lseek operation, which takes the following three

arguments: a �le descriptor, a new �le o�set, and a operation code to indicate whether the new

o�set is relative to the beginning of the �le, the current o�set, or the end of the �le.

The fstat operation retrieves the attributes of a �le speci�ed by a �le descriptor argument

and places them in a bu�er speci�ed by a bu�er location argument. The truncate operation

sets the size of a �le speci�ed by a �le descriptor argument to a value speci�ed by a number of

bytes argument. The close operation informs the operating system that the program no longer

needs the �le speci�ed by the �le descriptor argument.

Each �le stream (each entry in the open �le table) has two variables: the value of the current

�le o�set and a reference count, which indicates how many user �le descriptor tables refer to it.

4.1.1.3 Directory Stream Operations

The UNIX �le system supports many operations on directories, but application programs can

directly invoke only one operation: getdents. The getdents operation allows programs to iterate

over the �le names in a directory.

2

It takes three arguments, a �le descriptor, a bu�er location,

and the size of the bu�er. The �le descriptor must refer to an open �le stream object that

corresponds to a directory. The �rst invocation of getdents returns as many directory mappings

as will �t in the bu�er. The format of each mapping is a �le system independent

3

data structure

that contains both the symbolic name of the �le and the �le's inumber.

4.1.2 The Persistent Object Layer

Objects in the application interface layer create, access, and modify three types of persistent

objects in the UNIX �le system: regular �les, which are structured as arrays of characters;

directories, which map �le names to inumbers; and symbolic links, which map an inumber to a

path name. Thus, three classes of objects compose the persistent object layer of the UNIX �le

system:

2

In early versions of UNIX, programs read directories as if they were regular data �les and interpreted the

directory data structure. This method was non-portable and violated the encapsulation of directory data.

3

Some versions of UNIX support System V, 4.2 BSD, MS-DOS �le systems, which all use di�erent data

structures for directory entries.

32

1. persistent arrays of characters,

2. directories, and

3. symbolic links.

The stat, lstat, and fstat operations return the attributes of any class of persistent object

using the same data structure. Therefore, all classes of persistent objects share the same

operation, called info, that returns a structure that describes the attributes of the object.

Each persistent object also has a state variable that refers to a block-oriented storage ob-

ject, called an inode. Section 4.1.3 describes several classes of block-oriented storage objects,

including inodes.

4.1.2.1 Persistent Character Array Operations

Regular �les in UNIX resemble variable-sized arrays or characters with a lower bound of zero

and an upper bound of one less than the size of the �le. The atPut operation stores elements

in the array. It three arguments: the starting element number, the number of consecutive

elements to be stored, and a bu�er containing the elements. If it stores some of the consecutive

elements above the upper bound of the array, it automatically raises the upper bound. If the

starting element is above the upper bound, all elements between the current upper bound and

the starting element are set to zero. The at operation retrieves elements from the array. It

takes three arguments: the starting element number, the number of consecutive elements to be

retrieved, and a bu�er to hold the elements. If some of the consecutive elements to be retrieved

are above the upper bound of the array, then it retrieves only those up to the upper bound.

Both operations return the number of elements that they successfully store or retrieve.

The size operation returns the current number of elements in the array. The setSize operation

takes one argument and changes the upper bound to be equal to one less than the argument. If

the new size is smaller than the old size, it discards elements of the array above the new upper

bound. If the new size is larger than the old size, it sets elements of the array from the old

upper bound up to the new upper bound to zero.

The persistent character array class is a simple class. The primary function of all its opera-

tions is to convert between the byte-oriented operations required by objects in the application

33

interface layer and the block-oriented operations provided by objects in the storage management

layer.

4.1.2.2 Symbolic Link Operations

The symlink operation on a �le system interface stores a pathname as a sequence of characters

in a symbolic link object. All operations on a �le system interface can potentially retrieve the

contents of a symbolic link (if one or more of the components of a pathname argument refer

to symbolic links). Therefore, the symbolic link objects require operations to both store and

retrieve a pathname. Because pathnames are stored and retrieved as sequences of characters,

a symbolic link can have the same atPut and at operations as a persistent character array.

4.1.2.3 Directory Operations

As stated previously, directories map �le names to internal �le identi�ers, called inumbers.

The persistence of any regular �le, symbolic link, or directory is determined by the number of

directory entries that refer to its inumber. If that number (also called a link count) is greater

than zero, then the object persists. If the number is zero, then the object is destroyed and any

storage space that it used is reclaimed.

Each directory object has a state variable that refers to a container of inodes. The inumbers

stored in a directory are indices into its container.

The open operation takes a �le name as an argument and searches all entries for a match. If

a match is found, the directory returns the result of invoking the open operation on its container

using the inumber that corresponds to the �le name as the argument. The create operation also

takes a single �le name argument. It �rst performs the same operation as open. If the search

for the �le name fails, it invokes the create operation on its container, which returns a newly

initialized inode. It then stores an entry that contains the original argument as the �le name

and the inumber of the newly initialized inode. It also sets the link count of the corresponding

inode to one.

The add operation takes a �le name and an inumber as arguments and stores an entry if

the �le name is not already stored in the directory. It also increments the link count of the

corresponding inode. The remove operation takes a single �le name argument and searches all

34

entries for a match. If a match is found, the directory removes the entry that contains the �le

name. It also decrements the link count of the corresponding inode.

4.1.3 The Storage Management Layer

Each object in the persistent object layer invokes operations on a corresponding inode in the

storage management layer. Each directory also invokes operations on a container of inodes.

The storage management layer is actually several layers, since inodes refer to disk partitions,

which refer to disks.

4.1.3.1 Inode Operations

An inode has behavior and operations similar to a persistent character array. The di�erence

between an inode and a persistent character array is that inodes are arrays of blocks instead

of bytes. All blocks that belong to an inode are the same size, which is a multiple of the block

size of the disk partition on which the inode is stored.

The read and write operations take the same arguments and perform the same functions

as the corresponding operations on persistent character arrays. Each inode contains a table

of mappings from their logical block numbers to the corresponding physical blocks of the disk

partition on which the inode is stored. Both the read and write operations use this table of

mappings. When a write operation stores data to a block that is currently unmapped, the inode

invokes the allocate operation on a block allocator object .

The info operation returns the attributes that describe the inode. These attributes include

the �le's type (regular, directory, or symbolic link), owner, group, permission
ags, size, and

various time stamps.

The blockSize operation on an inode returns the size of its blocks. The numberOfBlocks

operation returns the size of the inode in blocks. The numberOfBytes operation returns the size

of the inode in bytes. Both the setNumberOfBlocks and the setNumberOfBytes operations reset

the size of the �le. If either operation truncates the inode, it also invokes the free operation on

a block allocator object to free each logical block that the inode no longer needs.

When an inode is no longer referenced by any object in the persistent object layer, then it

invokes the close operation on its container, passing itself as an argument.

35

4.1.3.2 Inode Container Operations

The control information for groups of inodes are stored together with their data blocks in an

indexed collection. I call the object that encapsulates this information an inode container . Each

container stores and retrieves data from the partition that also stores its inodes data blocks.

The open operation takes an inumber as an argument and returns the corresponding inode

if it has been previously been created. The create operation searches for an unused inode,

initializes it, and then returns it. The close operation checks to see if the link count of the inode

is equal to zero. If the link count is zero, it sets the inode's size to zero and then marks the

inode as unused.

4.1.3.3 Block Allocator Operations

All data blocks not used for inode and inode container control information can be used for either

data blocks or logical block maps. These blocks are managed by a block allocator object that

resembles a heap manager in many programming environments. The allocate operation takes a

number of consecutive blocks as an argument. It searches for a cluster of blocks to satisfy the

request and, if successful, returns the beginning block number of the cluster. The free operation

takes two arguments, the beginning block number of a cluster of consecutive blocks and the

size of the cluster in blocks. It makes the blocks available for future invocations of allocate.

4.1.3.4 Partition Operations

An inode container could divide an entire disk into a collection of inodes; however, UNIX sys-

tems traditionally partitioned disks into smaller sections to simplify systemmanagement[Bac86].

The mount command helps hide the partitioning of a disk from application programs. The four

major operations of disk partitions (read, write, blockSize, and numberOfBlocks) perform ex-

actly the same functions as the corresponding operations on inodes. Because partitions are

contiguous sections of a disk, the mapping of logical partition blocks to physical disk blocks is

simpler than the mapping of an inode's blocks to its partition's blocks. Furthermore, because

the size of each partition is �xed, it does not need to refer to a block allocator, and it does not

need to provide a setNumberOfBlocks or a setNumberOfBytes operation.

36

4.1.3.5 Partition Container Operations

Just as each inode belongs to a container that divides a partition into an indexed collection of

inodes, partitions can be considered to belong to a container that divides a disk into an indexed

collection of partitions. The open operation takes a partition number as an argument (also

called a minor device number), and returns the corresponding partition.

4.1.3.6 Disk Operations

Ultimately, all persistent data must be stored on a physical storage device, usually a hard,

oppy, or RAM disk. The read, write, blockSize, and numberOfBlocks operations all perform

the same functions as the corresponding operations on partitions. The architecture of the

UNIX operating system speci�es that all disk drivers should present the same set of operations,

regardless of the type of hardware.

4.2 The MS-DOS File System

This discussion of the MS-DOS �le system compares and contrasts it with the UNIX �le system

presented in the previous section. The MS-DOS �le system has many similarities with the UNIX

�le system, especially at the application interface layer. The di�erences between the two �le

systems primarily result from the fundamental di�erences in on-disk data structures and the

single-user nature of MS-DOS.

4.2.1 The Application Interface Layer

Numerous MS-DOS system calls provide application programs access to three objects that are

similar to the �le system interface object, �le stream, and directory stream of the UNIX �le

system.

4.2.1.1 File System Interface Operations

Like its UNIX counterpart, the MS-DOS �le system interface object also uses hierarchical

directories, and absolute and relative pathnames. Files do not have owners, nor do they belong

to groups of users, but they can be marked read-only. Instead of having a single root directory

for the entire system and a single current directory for each process, the �le system interface

37

stores a current directory for each disk drive or disk partition. It also keeps track of the current

drive or partition.

The MS-DOS �le system interface has operations that resemble the following UNIX oper-

ations: open, create, mkdir, rmdir, chdir, stat, and chmod. It also supports an operation not

available on UNIX, which sets the current drive.

MS-DOS does not allow a �le to be named by more than one directory; therefore, it does

not support a link or unlink operation. It does, however, provide a delete operation instead

of unlink. MS-DOS does not support symbolic links; therefore, it does not support a symlink,

readlink, or lstat operation. MS-DOS does not have a single root directory for the entire system;

therefore, it does not support a chroot operation. MS-DOS does not provide a mount table;

therefore, it does not support amount or unmount operation. MS-DOS does not store ownership

information for �les; therefore, it does not support a access or chown operation.

4.2.1.2 File Stream Operations

MS-DOS provides the operations on open �les that allow application programs to read or write

a single record sequentially, to read or write several consecutive records randomly, to reset the

size of the �le, to set the current �le o�set for sequential operations, to get the �le's attributes,

and to close the �le. These operations give programs the same functionality as the read, write,

lseek, fstat, truncate, and close operations on UNIX �le streams.

4.2.1.3 Directory Stream Operations

As with the UNIX �le system, the only operations on directories that are accessible to appli-

cation programs support iterating over the names stored in a directory. Instead of providing a

single getdents operation to support this feature, MS-DOS provides two operations. The �rst

operation �nds the �rst �le name that matches a pattern speci�ed in its argument. The second

operation, which programs can invoke repeatedly, �nds a subsequent �le name that matches

the pattern speci�ed previously.

4.2.2 The Persistent Object Layer

MS-DOS supports only two types of persistent objects: regular �les, which are structured as

arrays of characters, and directories.

38

4.2.2.1 Persistent Character Array Operations

Regular �les in the MS-DOS �le system support the same operations as regular �les in UNIX

�le system.

4.2.2.2 Directory Operations

Directories in the MS-DOS �le system support operations that resemble the following UNIX

operations: open, create, and remove. MS-DOS allows a �le name to be named by only one

directory; therefore, it does not support the add operation. Furthermore, MS-DOS does not

need to store a link count for each �le; therefore, the remove operation always deletes the �le.

While the interface of MS-DOS directories resembles its UNIX counterpart, the internal data

structures of MS-DOS and UNIX directories di�er greatly. UNIX directories store only names

and inumbers, whereas MS-DOS directories store both names and �le control information. This

control information includes the size and attributes of the �le, a modi�cation timestamp, and

the number of the �rst data block of the �le. Thus, MS-DOS keeps both storage management

and naming information within the same object.

4.2.3 The Storage Management Layer

Some objects in the MS-DOS storage management layer closely resemble objects in the UNIX

storage management layer, while others, like the �le allocation table (FAT), have no counterpart

in the UNIX �le system.

4.2.3.1 MS-DOS File Operations

Each directory entry contains the control information for a �le, which supports the same external

operations as a UNIX inode. Since directory entries have a �xed size (32 bytes), they cannot

contain a table that maps logical blocks to physical blocks. Instead, each entry stores only the

location of the �rst logical block of the �le. Each disk contains a single FAT, which stores the

data that maps logical blocks to physical blocks

39

4.2.3.2 MS-DOS File Container Operations

File containers support the same operations as inode containers. Because each directory entry

describes a �le, the amount of data dedicated to �le control information is variable, whereas

inode containers have a �xed number of blocks dedicated for inodes. As a substitute for the

inumbers used in UNIX to separate symbolic naming from the �le identi�ers needed by storage

management objects, one could use the location of the �rst logical block of each �le.

4.2.3.3 File Allocation Table Operations

The �le allocation table stores a linked list of physical block numbers for each �le. ThemapBlock

operation takes two arguments: a logical block number and a
ag to indicate whether it should

extend the linked list if the mapping for the logical block does not already exist. It the mapping

already exists, it returns the physical block number. If the mapping does not exist and no

extension is requested, it returns zero. Otherwise, it allocates a block of storage for each

mapping that needs to be added to the end of the list. The freeBlocks operation takes a single

argument, a logical block number. It truncates the elements of the list beyond the logical block

number speci�ed in the argument, and it frees the blocks no longer needed by the �le.

4.2.3.4 Disk Operations

Disks support the same operations in MS-DOS as in UNIX. The tradition of partitioning disks

is much less common in MS-DOS.

4.3 File Types in the VMS File System

Unlike UNIX and MS-DOS �le systems, which present �les as persistent arrays of characters,

the Record Management Service (RMS) or the VMS �le system[Sha91, Dei84] presents �les as

a collection of records .

VMS �les can contain either of two major types of records: �xed length and variable length.

4

A �le that contains �xed length records stores the size of its records as one of its attributes, in

which case all records within the �le have the same size. A �le that contains variable length

4

VMS actually supports three types of variable length records; see [Sha91] for details.

40

records either stores the size within each record or stores delimiting character strings at the

end of each record.

Record �les can have one of the following types: sequential , relative, and indexed . These

types determine which operations a �le supports and the behavior of those operations. All

three types of �les can contain either �xed or variable length records, but only sequential �les

can store records delimited by character strings.

4.3.1 Sequential Files

Sequential �les are suitable for both tape drives and disk drives. Records can be read consecu-

tively from the start of the �le, and appended to the end of the �le.

When a sequential �le is �rst opened, the read operation returns the �rst record. Each

subsequent call to read returns the next record. The read operation takes a bu�er and the size

of the bu�er as arguments and returns either the size of the record that is read or an error code.

The write operation on a sequential �le takes a bu�er and the size of the data within the

bu�er as arguments and stores the data in a new record at the end of the �le if the program

has read the last record of the �le. The write operation can also over-write an existing record

if it is the same size as the one being written. It returns an error code if an attempt is made to

over-write a record with a di�erent size.

Many programs sequentially read or write the entire contents of a �le, and sequential �les

adequately satisfy their requirements. Some programs, however, require random access to �les.

4.3.2 Relative Files

Relative �les are the simplest type of �le supported by VMS that provides random access.

They divide their storage into �xed length cells that either contain a record or are marked

empty. Operations on relative �les include a record number argument, which gives programs

full control over the order in which they access the records of a �le.

The read operation takes a record number, a bu�er, and the size of the bu�er as arguments

and returns either the size of the record that is read or an error code. The error code indicates

whether the corresponding cell is empty or the cell does not exist.

The write operation takes a record number, a bu�er, and the size of the data within the

bu�er as arguments and stores the data if the corresponding cell is empty. If the cell does not

41

exist, it creates a new cell and stores the data within it. An error code is returned to indicate

that the corresponding cell is not empty.

The update operation takes the same arguments as the write operation, and it performs the

same function, except that it over-writes the contents of a record within a non-empty cell.

The delete operation takes a record number as an argument, and it marks the corresponding

cell empty.

Relative �les support the random access features needed by many programs, but the only

mechanism they provide for identifying records is by cell number. A more convenient way to

access random records is by providing operations that identify records using symbolic names.

4.3.3 Indexed Files

Indexed �les identify records using sets of symbolic keys called indices. An indexed �le must

have at least one index, called a primary index. The keys in the primary index, which are

called primary keys, must be unique. Besides the primary index, �les can also have up to 254

alternate indices. The keys in an alternate index do not need to be unique.

Operations on indexed �les can access records either randomly and sequentially. Random

access operations take a key and an index number as arguments. Sequential operations access

records in the sorted order of a particular index.

The data for a particular key comes from a �xed location within each record, which can

be described by its o�set and length within the record. VMS allows an indexed �le to be

partitioned into areas. Files can store all data within a single area, or they can store records in

one area and the keys in other areas. Application programs that store each index for a �le in

a separate area increase the locality of data accesses, since the data for an index will be stored

close together. Therefore, these programs will perform better.

As mentioned earlier, both random and sequential interfaces for indexed �les could be im-

plemented by providing operations that accept keys and index numbers as arguments. Relative

�le and indexed �les, however, share common behavior. Therefore, I implement the interface

for indexed �les by having it inherit the interface of relative �les and augmenting this interface

with two operations: keyToRecord and keyToRecordNext.

The keyToRecord operation takes an index number and a key as arguments. It returns

the relative record number if the key is found within the speci�ed index; otherwise, it returns

42

an error code. The keyToRecordNext operation takes the same arguments as the keyToRecord

operation, and it performs the same function. It also returns the value of the next key within

the same index; therefore, it supports both random and sequential access.

The read operation takes the same arguments and performs the same function as the read

operation on relative �les.

The write operation takes the same arguments and performs the same function as the write

operation on relative �les. It also extracts the values for each of its keys and inserts them into

the appropriate indices.

The update operation takes the same arguments and performs the same function as the

update operation on relative �les. It also removes the values of the old record's keys from each

index. It then extracts the values for each of its own keys and inserts them into the appropriate

indices.

The delete operation takes the same arguments and performs the same function as the delete

operation on relative �les. It also removes the values of the old record's keys from each index.

4.4 Summary

The UNIX and MS-DOS �le systems support only two or three types of persistent objects:

arrays of characters, directories, and symbolic links. This simpli�es the storage management

layers of both operating systems, but it also limits their application interfaces layers.

Besides support directories, VMS supports six combinations of record and �le access types.

These types of �les enable VMS to present more features in its application interface, but they

also require features not found in the storage management UNIX or MS-DOS. The goals of this

thesis (generality, simplicity, and extensibility) require

� that a single model incorporate the types of persistent objects found in the byte-stream

oriented systems like UNIX, the record-oriented systems like VMS, and the object-oriented

systems like those mentioned in Section 3.1.3.3;

� that a few components model these features; and

� that more features can be added easily without changing the model.

43

Chapter 5

File System Framework

The �le system framework contains a hierarchy of abstract and concrete classes that can be

combined to build both standard and customized �le systems. This chapter introduces the

framework and categorizes and describes its abstract classes. Some classes provide interfaces to

applications and other subsystems, some classes de�ne objects that function as internal building

blocks, and other classes serve both purposes. System programmers can use the framework to

build new �le systems, both conventional and experimental. Application programmers can use

the interface classes to access and manipulate the persistent data stored within any �le system

built within this framework. The framework is also dynamically extensible, since it supports

the addition of classes at run-time.

5.1 Examples of the Framework

There are two orthogonal ways to view the �le system framework. The primary way is to

categorize objects into two classes:

� the PersistentStore

1

class de�nes persistent data stores, each of which stores and retrieves

blocks of persistent data using a random access method, and

1

This thesis uses notational conventions similar to [Rus91]. Both the names of classes and operations are

printed in sans serif font. Class names begin with capital letters, whereas operation names begin with lower case

letters. Plural nouns indicate several instances of a class, and the inde�nite article indicates a single instance

of a class. For example, \a PersistentStore" is an instance of the PersistentStore class, and \PersistentStores" are

instances of the PersistentStore class.

44

� the PersistentObject class de�nes persistent objects, which encapsulate and provide a

better interface to the data managed by a persistent data store.

A PersistentStore provides random access to an uninterpreted sequence of blocks of data while

a PersistentObject interprets the data as having a format. (The most essential objects belong

to either of these two fundamental classes. Some objects in the framework, however, belong

to neither class. These objects, described in Section 5.2.6 and Section 5.2.3.2, either augment

the framework's application interface or enhance the structure and reuse of code.) For exam-

ple, a UNIX inode is a PersistentStore, while a UNIX directory is a PersistentObject. A disk

is a PersistentStore, but a table of descriptors for the �les stored on a disk is a PersistentOb-

ject. All PersistentStores have the same interface, but the interfaces of di�erent subclasses of

PersistentObject di�er greatly.

?

?

Application Programs

Object Interface Layer

Persistent Object Layer

Storage Management Layer(s)

I/O Subsystem

Figure 5.1: Layers of the File System Framework.

The second way to view the �le system framework is that it divides a �le system and its

components into three layers, as shown in Figure 5.1. Objects in the layers of the �le system

serve the following purposes:

� Objects in the lowest Storage Management Layer access hardware devices in the I/O

subsystem like disk controllers or network interfaces. Access is de�ned in terms of �xed-

size sequences of blocks, where each block corresponds to a physical block used by the

45

hardware device. Objects in the higher Storage Management Layers manage the contents

of the underlying physical stores as nested containers of logical stores. Access is de�ned in

terms of either �xed-size sequences of blocks (for example, disk partitions

2

), or extensible

sequences of blocks (for example, UNIX inodes). The Storage Management Layers contain

PersistentStores and PersistentObjects that encapsulate storage organization and sharing.

� Objects in the Persistent Object Layer encapsulate the data within lower layers and

provide several kinds of operations on the data. These operations include support for

naming and data structuring. Examples include directories of �le names, persistent arrays

of bytes, and collections of records. System programmers can extend the framework by

designing persistent objects that support many other types of operations and inter-object

relationships. All objects in the Persistent Object Layer are PersistentObjects. These

objects may be accessed by applications directly; however, application programs can also

access them through objects in the Object Interface Layer.

� Objects in the Object Interface Layer de�ne additional access protocols for both applica-

tion and system programs. One class of interface objects de�nes a per-process interface

to the �le system that keeps track of the current directory and provides a uni�ed name

space for referencing �les in the system. Another set of classes de�nes byte- and record-

stream protocols for the data encapsulated within the various types of �le structures in

the Persistent Object Layer. All objects in the Object Interface refer to PersistentObjects

or PersistentStores in the lower layers.

5.1.1 A Concrete Example

To illustrate the kinds of objects that compose an instantiation of the framework, Figure 5.2

shows a simpli�ed BSD UNIX �le system built from the framework. The I/O subsystem provides

objects in the Storage Management Layer an interface to direct-access block storage devices.

In this example, the storage device is a SCSI controller with one or more disks attached. A

SCSIDisk object represents one of these disks and provides a block-oriented read/write interface

to the physical storage device. The SCSIDisk supports a SCSIContainer, which divides the disk

into contiguous regions called Partitions. One of these Partitions uses the disk as its source

2

A partition is a physically contiguous, �xed-size section of a disk.

46

SCSIContainer
Partition
Partition
Partition

BSD
Inode

BSD
Inode

SCSI
Disk

Persistent
Array
Stream

BSDAllocator

BSDContainer

I/O Subsystem

Application Programs

Persistent
Array
Stream

Persistent
Char
Array

Persistent
Char
Array

Current
BSDDirectory

Root
BSDDirectory

BSD
Inode

BSD
Inode

File
System
Interface

Object
Interface
Layer

Persistent
Object
Layer

Storage
Management
Layers

Figure 5.2: Concrete Example of File System Framework

47

of data and supports a BSDContainer, which organizes the data blocks of the partition as an

indexed set of �les called BSDInodes.

The BSDInodes use the partition as their source of data, and they use a BSDBlockAllocator

to request additional blocks of the partition's storage. Each BSDInode stores the data for an

object in the Persistent Object Layer, either a BSDDirectory or a PersistentCharArray. The

BSDDirectories provide symbolic names for BSDInodes. The PersistentCharArrays provide access

to regular �les, which are sequences of bytes that are stored in their underlying BSDInodes.

In the Object Interface Layer, a FileSystemInterface parses pathnames into sequences of refer-

ences to directories that start with either the root or current directory. It provides operations to

open, create, and remove PersistentCharArrays, to create and remove directories, and to change

the current or root directories.

PersistentArrayStreams provide byte-addressable, stream-oriented access to the data encap-

sulated within their corresponding PersistentCharArrays. PersistentArrayStreams support read

and write operations, which perform the same function as the UNIX read and write system

calls. They also support an operation similar to the UNIX lseek system call. PersistentAr-

rayStreams convert the requests of application and system programs into the at and atPut

operations supported by PersistentCharArrays.

PersistentCharArrays convert the at and atPut requests on their elements into the block-

oriented read and write operations supported by BSDInodes. BSDInodes convert reads and

writes of logical blocks into reads and writes of their partition's blocks. Partitions convert reads

and writes of their blocks into reads and writes of their disk's physical blocks.

The set of PersistentArrayStream objects is similar to the �le table used by the UNIX oper-

ating system, and the set of BSDInode objects is similar to the inode table used by the UNIX

operating system[Bac86].

5.1.2 An Abstract Example

The framework abstracts more than just UNIX-like or stream-oriented �le systems. As with any

abstract framework[WBJ90], its elements can be combined to form various running systems. A

more abstract view of the �le system framework is shown in Figure 5.3, which uses the following

key:

48

File
File

File
File

File
File
File

File
File

Disk

BlockAllocator

Persistent
Store
Container

File
System
Interface

Mount
Table

Record
Stream

Record
File

Persistent
Array

User-
defined
Persistent
Object

Persistent
Store
Dictionary

Persistent
Store
Dictionary

Symbolic
Link

File
Persistent
Store
Container

I/O Subsystem

Application Programs

Object
Interface
Layer

Persistent
Object
Layer

Storage
Management
Layers

BlockAllocator

Persistent
Store
Container

Persistent
Array
Stream

Figure 5.3: Abstract File System Framework

49

� rectangles represent physical and logical storage devices (either Disks or Files which are

kinds of PersistentStores),

� ellipses represent objects that organize the sharing of both physical and logical storage

devices (PersistentStoreContainers and BlockAllocators),

� hexagons represent persistent objects that name persistent stores and their corresponding

persistent objects (PersistentStoreDictionaries and SymbolicLinks),

� circles represent persistent objects that structure the data within �les (PersistentArrays,

RecordFiles, and user-de�ned PersistentObjects),

� trapezoids represent interface objects that provide naming protocols (FileSystemInterfaces

and MountTables), and

� octagons represent interface objects that provide external data access protocols for per-

sistent objects (RecordStreams and PersistentArrayStreams).

A reference from one object to another is shown as a line with an arrow pointing towards the

object being referenced. Each PersistentStore refers to its corresponding PersistentObject and

vice versa, these relationships are shown as lines with arrows pointing towards both objects.

The I/O subsystem of the computer underlies the framework. One or more layers of Per-

sistentStores �t above the I/O hardware. These stores can include various kinds of disks, disk

partitions, and �les. PersistentStoreContainers divide disks into sets of partitions or sets of �les,

and they also divide partitions into sets of �les. Therefore, all but the lowest level Persistent-

Stores are contained within a PersistentStoreContainer.

If a PersistentStoreContainer allows Files to be created and deleted or if it contains variable-

sized Files, it uses a BlockAllocator to manage the data blocks of the next lower layer's Persis-

tentStore. For example, a container of �xed-size disk partitions does not need a BlockAllocator,

but a container of UNIX or MS-DOS �les does.

Some Files in the highest Storage Management Layer support naming objects, while other

Files support various types of RecordFiles, PersistentArrays, and user-de�ned PersistentObjects.

The naming objects can be either directories or, if it is a BSD UNIX �le system, symbolic links.

RecordFiles support record-oriented �le access, PersistentArrays support byte-stream-oriented

�le access, and user-de�ned PersistentObjects support object-oriented data access.

50

Application programs can refer directly to objects in the Persistent Object Layer, or they

can use interface objects like FileSystemInterfaces and RecordStreams. For UNIX �le systems,

a MountTable enables the FileSystemInterface to unify the name spaces of separate Persistent-

StoreContainers.

The interfaces of objects in this framework describe general types of objects. Systems

programmer can build concrete classes that implement one of these interfaces. An object in the

framework invokes operations on another object based on the type of the other object, not on

its speci�c concrete class. Thus all operations are polymorphic, since they can be applied to

various classes of objects. Since the framework is implemented in C++, types are represented

by abstract classes. Figure 5.4 shows the top levels of the class hierarchy; more of the hierarchy

is shown when the italicized classes are introduced.

Base

MountAssociation

Proxy

Object

BlockAllocator ...

Class PersistentClass

FileSystemInterface

MemoryRange

MemoryObject

PersistentStore ...

MemoryObjectCache

MountTable

PersistentObject ...

RecordStream ...

ReferenceCount

Figure 5.4: File System Class Hierarchy

5.2 Components of the Framework

This section introduces the major classes of the �le system class hierarchy, which de�ne the

components of the framework. Most of the classes introduced in this section are abstract; a

51

few classes, however, are concrete because they are general enough to satisfy the requirements

of all �le systems built using them.

5.2.1 Storage Devices

Regardless of how persistent data is organized, named, and structured, they must ultimately be

stored on some physical persistent storage device. Because physical and logical storage devices

share the same interface, they also share a single abstraction. The abstract PersistentStore class

de�nes an access protocol for both physical storage devices (disks) and logical storage devices

(�les); each device is modeled as a sequence of identically sized blocks of data.

In the Choices virtual memory system[RC89], the MemoryObject class abstracts logical

segments of memory. As a subclass of MemoryObject, PersistentStore abstracts both disks

and �les by adding the operations and state data described below. Figure 5.5 contains a

simpli�ed version of the C++ class declarations for PersistentStore, for MemoryObject, and for

MemoryRange, which is the superclass of MemoryObject.

3

Each PersistentStore inherits from class MemoryRange member variables that contain the

number of data blocks and the size of each block. For e�ciency, block sizes must be integer

powers of two; therefore, block sizes are stored as log

2

(blockSize). Each PersistentStore has an

id number (see Section 5.2.4), a reference to a PersistentObject that encapsulates its data, and,

if it is mapped into virtual memory, a reference to a MemoryObjectCache (see Section 5.2.5).

The most important data access operations de�ned by PersistentStores are read and write.

These operations retrieve or store one or more contiguous blocks of data. Objects that commu-

nicate with PersistentStores using these operations must supply a starting block number, the

number of contiguous blocks, and a bu�er address[RC89].

4

Both operations return the num-

ber of blocks successfully read or written. The Choices virtual memory and �le systems can

both use subclasses of PersistentStores because they inherit the read/write interface from the

MemoryObject class. The default implementations of read and write perform no data transfer

and thus return zero; therefore, subclasses must implement one or both of these operations.

3

All functions de�ned by all abstract classes in this framework are virtual functions; therefore, the virtual

keyword has been elided from each function de�nition.

4

To simplify the discussion of the read and write operations, bu�er addresses will be given the type \char *"

throughout this thesis. See [Rus91] for a detailed discussion of their actual type.

52

class MemoryRange : public Object {

public:

MemoryRange(int numberOfBlocks, int log2BlockSize);

int blockSize();

int log2BlockSize();

int numberOfBlocks();

protected:

int _numberOfBlocks;

int _log2BlockSize;

}

class MemoryObject : public MemoryRange {

public:

MemoryObject(int numberOfBlocks, int log2BlockSize);

int read(int start, int count, char * buffer);

int write(int start, int count, char * buffer);

ErrorCode copy(MemoryObject * destination);

int setNumberOfBlocks(int);

protected:

MemoryObjectCache * _cache;

}

class PersistentStore : public MemoryObject {

public:

PersistentStore(int numberOfBlocks, int log2BlockSize, int idNumber);

PersistentObject * asA(Class *, ErrorCode &);

Class * supports(Class *);

void close(PersistentObject *);

int recordSize();

int setRecordSize(int);

int numberOfRecords();

int setNumberOfRecords(int);

int idNumber();

void info(FileInfo *)

protected:

int _idNumber;

int _numberOfRecords;

PersistentObject * _persistentObject;

Class * _supports;

};

Figure 5.5: Class Declaration: PersistentStore

53

The copy operation on a store takes a destination store as an argument, reads each of the

store's blocks, and writes the blocks to the destination store. Figure A.2 gives the general

algorithm for copying PersistentStores; subclasses can overload the operation to improve its

performance. The copy operation �rst calculates an appropriate bu�er size for both reading

and writing data. It then iterates over each set of blocks, reading them and writing them.

Finally, it sets the size of the destination store, and returns an error code if the operation is

not successful.

PersistentStores provide read/write access to raw data, but often a di�erent interface is needed

to satisfy the requirements of the clients of the �le system. Some examples include: a container,

which treats the data as a collection of �les; a dictionary, which treats the data as a collection

of �le names; and a record �le, which treats the data as a collection of records. Subclasses of

PersistentObject de�ne these and other customized interfaces to a PersistentStore's raw data. The

PersistentObject class and its abstract subclasses provide operations that control the activation

and deactivation of persistent objects, how these objects are mapped into memory, and how

they are garbage collected. Each PersistentStore has an associated PersistentObject class that

provides a data abstraction and encapsulation of the persistent data in the store. At run-time,

there is a one-to-one correspondence between an instance of a PersistentStore and its associated

PersistentObject.

The PersistentStore asA operation returns a reference to the store's PersistentObject. If the

PersistentObject has not yet been instantiated, the operation instantiates the object by mapping

the store's persistent data into memory. The PersistentObject encapsulates this data as its state

data. The PersistentStore thus provides the underlying data for its associated PersistentObject.

PersistentObjects and their underlying PersistentStores provide the foundation for the Choices

�le system framework.

PersistentObjects and their underlying PersistentStores implement object-oriented access to

persistent data. The asA operation takes an argument that may be either a concrete or an

abstract Class

5

and returns a reference either to an instance of the argument or an instance of

a concrete subclass of the argument, respectively. Figure A.1 gives the algorithm for the asA

operation. The asA operation relies on the supports operation to perform the following steps:

5

See [MCK91] for a description of �rst-class classes in Choices.

54

1. determine if the stored data structure is compatible with the requested Class or any of its

subclasses, and

2. if the requested Class is compatible with the stored data structure:

(a) return the requested Class if it is concrete,

(b) otherwise, return the appropriate concrete subclass.

3. if the requested Class is incompatible with the stored data structure, return zero.

Several �le system clients may access the same persistent data. To provide data consis-

tency for concurrent updates to persistent data through the operations of a persistent object,

the PersistentStore ensures that there is, at maximum, only one instance of its associated Per-

sistentObject. A PersistentStore uses its instance variable, persistentObject, to refer to its

corresponding PersistentObject. Several PersistentObject subclasses use this data consistency

provision to implement a main memory cache for frequently accessed persistent data. When

a PersistentObject is no longer needed in primary memory, its �nalization code calls the close

operation on its underlying PersistentStore to inform the PersistentStore that it is also no longer

needed in primary memory. A further asA request will instantiate a new PersistentObject that

uses the existing persistent data.

PersistentStores also provide operations to report the size of their blocks and records and

to report and set their length in both blocks and records. Block and record sizes are given as

numbers of bytes. In general, records may span blocks.

The concept of a PersistentStore is used both for physical and logical storage devices, allowing

reuse of code. All concrete subclasses of PersistentStore, shown in Figure 6.1, belong to one of

two categories represented by the following subclasses:

� Disks encapsulate physical storage devices like hard disk drives,
oppy disk drives, and

RAM disks. Disks communicate with objects in the I/O subsystem.

� Files encapsulate logical storage devices like UNIX inodes and disk partitions. Files com-

municate with objects in a lower Storage Management Layer of the �le system. Ultimately,

the data read from and written to a File is also read from and written to a Disk.

55

5.2.1.1 Disks

Several Disk subclasses of PersistentStore contain machine-speci�c code to interface with disks

and controller hardware. In conventional operating systems, the methods of these classes would

be the disk driver routines. Figure 5.6 contains a simpli�ed version of the C++ declaration for

class Disk. The read and write operations, shown in Figures A.3 and A.4, both convert data

transfer requests into messages sent to the disk's controller using the doio operation. The

classes of PersistentObjects associated with Disks structure the data on the disks into collections

of partitions or collections of �les. Disks are discussed in detail in [Kou91].

class Disk : public PersistentStore {

public:

Disk(int numberOfBlocks, int log2BlockSize, int idNumber, int retries);

int read(int start, int count, char * buffer);

int write(int start, int count, char * buffer);

int partitions();

protected:

int _retries;

Semaphore * _mutex;

int doio(int start, int count, char * buffer, int operationCode);

};

Figure 5.6: Class Declaration: Disk

5.2.1.2 Files

A File is a PersistentStore that is contained within a PersistentStoreContainer (see Section 5.2.3).

Instead of containing hardware interface code like Disks, it has a source PersistentStore that

supplies it with data from a lower layer of the �le system. For example, the BSDInodes in

Figure 5.2 get their data from a Partition, which gets its data from a SCSIDisk. Both the

BSDInodes and the Partition are Files. Figure 5.7 contains a simpli�ed version of the C++

declaration for class File.

56

class File : public PersistentStore {

public:

File(int numberOfBlocks, int log2BlockSize, int idNumber,

PersistentStoreContainer *, PersistentStore * source,

int offset = 0, Class * = 0);

int read(int start, int count, char * buffer);

int write(int start, int count, char * buffer);

PersistentStoreContainer * container();

protected:

PersistentStore * _source;

PersistentStoreContainer * _container;

int _offset;

int _log2BlockFactor;

int _isBuffered;

int basicRead(int start, int count, char * buffer);

int basicWrite(int start, int count, char * buffer);

int blockFactor();

};

Figure 5.7: Class Declaration: File

57

Files provide a window into their source PersistentStore. The size of this window can be

either �xed or variable and can range from zero up to the size of the source PersistentStore.

The window can be either contiguous or divided into various discontiguous regions of blocks.

Files that provide a contiguous window on their source use their offset variable to hold the

number of the �rst block of the window. Since many �le systems support the clustering of disk

sectors, a File uses a clustering factor (log2BlockFactor) to convert between the block sizes

of adjacent �le system layers. If a �le has a smaller block size than its source store, it must

bu�er reads and writes of the store.

The read and write operations of a File, shown in Figures A.5 and A.6, are forwarded to

its source PersistentStore after the arguments are adjusted. The adjustment of arguments is

performed by the basicRead and basicWrite operations, shown in Figures A.7 and A.8. Both

operations handle two cases of relationships between the block sizes of the File and its source.

If the File has a smaller block size, the blocks must be bu�ered and the data copied between the

memory address given as the third parameter to either read or write and the bu�er used to read

or write from the source. If the block size of the File is greater than or equal to the source's, no

bu�ering is needed. Instead, basicRead and basicWrite both multiply the starting block number

and block count by the clustering factor. The block count returned by the source's read or

write is adjusted by the clustering factor before being returned to the function that invoked

the operation. Besides being multiplied by the clustering factor, the starting block number

must also be mapped to its source's block number. Files that provide a contiguous window on

their source can inherit the read and write operations from the File class. Other subclasses must

calculate the block number argument using an appropriate function that they de�ne to map the

File's logical block numbers to its source's block numbers. See Chapter 6 for more information

on subclassing Files.

5.2.2 Persistent Objects

Though PersistentStores provide an abstract interface to data storage devices, they do not

provide the high level interfaces required by most application programs. For example, they do

not allow programs to access �les by name, nor do they support sequential access to individual

bytes or records. PersistentObjects encapsulate the data made accessible by PersistentStores and

provide a set of operations on that data. Subtypes of PersistentObject serve several purposes in

58

the �le system, including organization, naming, and �le data structuring. These subtypes will

be described in the following sections, after the PersistentObject class is presented.

A PersistentObject provides an encapsulation its underlying PersistentStore; therefore, it

allows its clients to access the data of the PersistentStore only through the encapsulating in-

terface. Nevertheless, a PersistentObject does allow its clients to access some attributes of its

PersistentStore, by forwarding several operations to it. These operations include idNumber,

numberOfRecords, recordSize, and info. Though it forwards some operations, does not forward

read and write. Instead, a PersistentObject must de�ne its own operations, which read and write

the data of its PersistentStore. Sometimes these new operations leave most of the control to the

client. For example, a PersistentArray treats the PersistentStore as an array, providing operations

that clients can use to load and store elements. On the other hand, sometimes the interface

is so di�erent from that of the PersistentStore that it is hard to tell that a PersistentStore is

involved. For example, a PersistentStoreContainer provide create, open, and close. All of these

operations either read, write, both read and write the underlying PersistentStore.

All subclasses of PersistentObject inherit several of its operations. Figure 5.8 contains a

simpli�ed version of the C++ declaration for class PersistentObject. Each PersistentObject has at

least two instance variables, one references its underlying PersistentStore, and the other is a
ag

that indicates whether the object has been modi�ed since it was read from the PersistentStore.

Figure 5.9 shows the top level of the PersistentObject class hierarchy; lower levels will be shown

in the sections in which these classes are introduced.

The init operation provides a means to initialize a PersistentObject. Usually a C++ program

uses a constructor to initialize an object, but PersistentObjects have their constructors called

each time their data are retrieved from their PersistentStore. The init operation uses the UNIX-

styled argument-count and argument-vector to give the function maximum
exibility. The

noRemainingReferences operation is called only by the reference-counting code inherited from

class Object. See [MCK91] for a description of reference-counting in Choices . This operation

�rst calls the objects
ush operation and then invokes close on its store to inform the store

that it is no longer needed in primary memory. The
ush operation converts all of an object's

references to other PersistentObjects to their persistent format.

PersistentObject provides two operations to give applications control over the garbage col-

lection of its various subclasses. The persist operation adds the object to the set of root objects

59

class PersistentObject : public Object {

public:

PersistentObject(PersistentStore * source);

int init(int argc, char *argv[], FileSystemInterface * = 0);

void flush();

int persist();

int desist();

PersistentObject * asA(Class *, ErrorCode &);

int copy(PersistentObject *);

int recordSize();

int numberOfRecords();

void info(FileInfo *);

int idNumber();

protected:

char _isModified;

PersistentStore * _source;

void noRemainingReferences();

};

Figure 5.8: Class Declaration: PersistentObject

PersistentObject

AutoloadPersistentObject

RecordFile

...

PersistentArray ...

PersistentStoreContainer ...

PersistentStoreDictionary ...

Figure 5.9: Persistent Object Class Hierarchy

60

if it is not already in the set, and the desist operation removes the object from the set of root

objects if it is in the set.

PersistentObjects respond to several operations by forwarding them to their underlying Per-

sistentStores. These forwarded operations allow other objects to query a PersistentObject about

the attributes of its underlying PersistentStore. They include:

� asA, which returns a reference to an object of the kind of the given Class if this Persis-

tentObject's underlying store supports the Class,

6

� copy, which copies the data from this PersistentObject's store to the underlying store of

the given PersistentObject,

� recordSize, which returns the size of records stored if the data has a record structure or

returns \one" if the data has no record structure,

� numberOfRecords, which returns the number of records stored if the data has a record

structure or returns the number of bytes stored if the data has no record structure,

� info, which returns all attributes associated with the object, and

� idNumber, which returns the logical name of the object (see Section 5.2.4).

5.2.3 Storage Device Organization and Sharing

The data in a PersistentStore can be interpreted as a collection of Files. This organization makes

it easier for users to share a device and enables users to store several logical collections of data

on a single physical device.

5.2.3.1 PersistentStoreContainers

The abstract subclass of PersistentObject that supports the organization and sharing of storage

devices is called PersistentStoreContainer. A PersistentStoreContainer divides the contents of a

PersistentStore into an indexed collection of Files. It creates, makes accessible, and deletes these

Files. PersistentStoreContainers can be nested to an arbitrary depth; this supports the multiple

6

Usually the asA operation on PersistentObjects returns either the object itself or zero, since there is a one-

to-one correspondence between the PersistentObject and its underlying PersistentStore.

61

Storage Management Layers of the framework (see Figure 5.3). The PersistentStoreContainer in

the lowest layer divides a disk into several partitions, and the PersistentStoreContainer in the

next layer subdivides partitions into logical storage for various types of �les.

class PersistentStoreContainer : public PersistentObject {

public:

PersistentStoreContainer(PersistentStore * source);

File * open(int id, ErrorCode &);

File * create(int id, Class *, ErrorCode &);

void close(File *);

PersistentStoreDictionary * rootDictionary();

void synchronize();

protected:

Semaphore * _mutex;

BlockAllocator * _allocator;

File ** _files;

int _numberOfFiles;

int _openFiles;

File * basicOpen(int idNumber, ErrorCode &);

File * basicCreate(int idNumber, Class *, ErrorCode &);

void basicClose(File * mo);

int basicRootId();

void basicSynchronize();

};

Figure 5.10: Class Declaration: PersistentStoreContainer

Figure 5.10 contains a simpli�ed version of the C++ declaration for class PersistentStore-

Container. A PersistentStoreContainer has a reference to an underlying PersistentStore and the

modified
ag (both inherited from PersistentObject), a Semaphore that supports mutual ex-

clusion, a BlockAllocator(see below), a table of references to all Files that are currently open,

the total number of Files, and the number of Files currently open.

The major operations supported by PersistentStoreContainers are create, open, and close.

The create operation, shown in Figure A.10, returns a newly created File. The open operation,

62

shown in Figure A.9, takes a container-index as an argument and returns the corresponding File.

The close operation, shown in Figure A.12, informs a PersistentStoreContainer that a currently

open File is no longer being used by any other object in the system.

To support naming of contained objects, each PersistentStoreContainer has a rootDictionary

operation, shown in Figure A.11, that returns a PersistentStoreDictionary (see Section 5.2.4) from

which the contained Files can be reached. The synchronize operation, shown in Figure A.13,

writes out all of a container's data structures that had been read from its source PersistentStore

and then modi�ed.

All �ve public operations allow subclasses to inherit and share mutual exclusion and open

�le table manipulation code. These operations are de�ned using the protected operations that

subclasses must implement (see Chapter 6).

5.2.3.2 BlockAllocator

While a PersistentStoreContainer subdivides a PersistentStore, a BlockAllocator manages the al-

location of its data blocks. In particular, it keeps track of which blocks are currently allocated

and which blocks are free. Figure 5.11 contains a simpli�ed version of the C++ declaration for

class BlockAllocator. Subclasses encapsulate various mechanisms to manage block allocation,

including free-lists or bit-maps. A BlockAllocator has a reference to its container's Persistent-

Store, which is used to retrieve and store information about which blocks are allocated and free,

and a Semaphore that supports mutual exclusion.

A BlockAllocator is not a PersistentObject, instead it is a component of a PersistentStore-

Container. BlockAllocator is a separate class because it allows code reuse, since two or more

subclasses of PersistentStoreContainer can use the same subclass of BlockAllocator.

Files whose size can change, e.g. those that represent variable-length �les, use the allocate

and free operations of BlockAllocators to request and release the blocks of storage. Allocate

reserves a block of storage and returns its index, and free releases a block of storage that is

no longer needed. Both public operations, shown in Figures A.14 and A.15, allow subclasses

to inherit and share mutual exclusion code. These operations are de�ned using the protected

operations that subclasses must implement (see Chapter 6).

63

class BlockAllocator : public Object {

public:

BlockAllocator(PersistentStore * source);

int allocate(int & blocks, int hint, int numberOfBlocks);

void free(int & blocks, int blockNumber, int numberOfBlocks);

protected:

PersistentStore * _source;

Semaphore * _mutex;

int basicAllocate(int & blocks, int hint, int numberOfBlocks);

void basicFree(int & blocks, int blockNumber, int numberOfBlocks);

};

Figure 5.11: Class Declaration: BlockAllocator

5.2.4 Naming

PersistentStores and PersistentObjects have both logical and symbolic names. The logical names

of PersistentStores and PersistentObjects are unique and are derived from the organization of

nested PersistentStoreContainers:

� The method of identifying a PersistentStore depends on whether it is a Disk or a File.

{ A Disk is identi�ed by a unique index within a computer system.

{ A File is identi�ed by a pair comprising the identi�er of its container and the File's

index within its container.

� A PersistentObject shares the identi�er of its underlying PersistentStore.

7

Within the Storage Management Layers of the framework, the �le system identi�es Persistent-

Stores by their logical names, whereas higher layers and application programs identify Persis-

tentStores by their symbolic names.

While logical names are based on the organization of nested PersistentStoreContainers, sym-

bolic naming is orthogonal to organization. Therefore, although there is a single unique mapping

7

A PersistentObject can share the identi�er of its underlying PersistentStore because there is a one-to-one

correspondence between them.

64

of logical names to PersistentStores in a computer system, multiple symbolic name spaces can

be mapped onto the set of logical names. Within each name space, a single PersistentStore can

have many symbolic names.

5.2.4.1 PersistentStoreDictionaries

PersistentStores can be given symbolic names by and grouped into objects in both the Persistent

Object and Object Interface Layers. In the Persistent Object Layer, PersistentStoreDictionaries,

which are collections of <symbolic-key, logical-name> pairs, map symbolic names to the logical

names of PersistentStores. Within any dictionary, the keys must be unique, but several keys

may map to the same logical name. An example of a PersistentStoreDictionary is a System V

UNIX directory, which maps �xed-length symbolic keys to logical names called inumbers.

Using symbolic names, PersistentStores can be opened from, created in, added to, and

removed from PersistentStoreDictionaries. Figure 5.12 contains a simpli�ed version of the C++

declaration for class PersistentStoreDictionary.

A PersistentStoreDictionary has a reference to its underlying PersistentStore (inherited from

PersistentObject), a Semaphore that supports mutual exclusion, a reference to a PersistentStore-

Container that contains the Files to which its keys refer, and several variables that it uses to

communicate with concrete subclasses.

The open operation, shown in Figure A.20, takes a key as an argument and returns the

named PersistentStore, if the key is found. It obtains the PersistentStore by invoking the open

operation on its PersistentStoreContainer using the id-number that corresponds to the key.

Two operations, create and add, shown in Figures A.18 and A.19, allow PersistentStores

to be added to dictionaries. The create operation performs the same function as open for

existing keys, except that it also checks to ensure that the store supports the given Class of

PersistentObject. If the key does not exist, however, the operation creates and returns a new

PersistentStore. The add operation takes a symbolic key and a PersistentStore as arguments. It

then invokes the PersistentStore's idNumber operation and inserts the key and id-number into

the dictionary.

The remove operation, shown in Figure A.21, deletes a mapping from a key to an id-number.

The keys operation, shown in Figure A.17, returns the set of keys that is stored in the dictionary.

65

class PersistentStoreDictionary : public PersistentdObject {

public:

PersistentStoreDictionary(PersistentStore * source);

File * open(char * key, ErrorCode &);

File * create(char * key, Class *, ErrorCode &);

ErrorCode add(char * key, File *);

ErrorCode remove(char * key);

ErrorCode keys(char * buffer, int bufferSize, int & start);

ErrorCode associations(char * buffer, int bufferSize, int & start);

protected:

PersistentStoreContainer * _container;

Semaphore * _mutex;

char * _buffer;

int _size;

int _idNumberOfKey;

int _offset;

int _emptyOffset;

int _maxKeyLength;

ErrorCode basicKeys(char * buffer, int bufferSize, int & start);

ErrorCode basicAssociations(char * buffer, int bufferSize, int & start);

int findKey(char * key, int neededSize);

int insertAssociation(char * key, int keyLength, int idNumber);

int clearAssociation();

int associationSize(int keyLength);

int isEmpty();

};

Figure 5.12: Class Declaration: PersistentStoreDictionary

66

The associations operation, shown in Figure A.16, returns the set of mappings from keys to id-

numbers that is stored in the dictionary.

All six public operations allow subclasses to share not only mutual exclusion code, but also

much of the algorithms for open, create, add, and remove. These operations are de�ned using

the protected operations that subclasses must implement (see Chapter 6).

5.2.4.2 SymbolicLinks

The SymbolicLink class implements the BSD UNIX concept of a symbolic link, i.e. a mapping

from a logical name to a pathname. Figure 5.13 contains a simpli�ed version of the C++

declaration for class SymbolicLink. SymbolicLinks provide the at and atPut operations, both

inherited from PersistentArray (see Figure 5.15), to retrieve and store their pathname.

class SymbolicLink : public PersistentCharArray {

public:

SymbolicLink(PersistentStore * mo);

};

Figure 5.13: Class Declaration: SymbolicLink

The SymbolicLink class adds neither state nor operations to the de�nition of class Persistent-

Array, nor does it rede�ne any inherited operations. The class is, nevertheless, important, since

FileSystemInterfaces check each PersistentStore accessed during pathname parsing (see below)

to see if it stores the data for a SymbolicLink. This check is performed by invoking the asA

operation with the SymbolicLink class as an argument. In this case, the asA operation will

succeed if and only if the store supports the SymbolicLink class.

5.2.5 File Data Structures

The framework incorporates three models for structuring the data accessed by applications:

� �les that are structured as arrays of bytes or words,

� �les that are structured as collections of records, and

� �les that are data structures encapsulated by persistent objects.

67

In Chapter 2 these three methods of �le access are called stream-oriented, record-oriented, and

object-oriented, respectively.

The �rst model is suited to the C programming language and the UNIX and MS-DOS

operating systems. The �le system presents a random-access interface to sequences of bytes

and imposes no additional structure on persistent data. Programs can cast the data that

they read into whatever structures are needed. The second model �ts programming languages

like Cobol, PL/1, and Pascal and operating systems like VMS. The �le system presents data

as records that can correspond to the types of data structures of the language in which the

program that created them was written. The third model �ts programming languages like C++

and object-oriented operating systems like Choices . The �le system presents data as objects

that are instances of user-de�ned subclasses of PersistentObject.

As with objects in the Storage Management Layer (Disks and Files), �le data structuring

objects either belong to primitive building-block classes or to composite classes that combine

primitive objects to build more complex objects.

All classes of PersistentObjects discussed so far in this chapter are designed to abstract the

internal components of a �le system. The PersistentObjects discussed in this section encapsulate

the data in PersistentStores by bu�ering the blocks of data and providing an interface that

corresponds to objects commonly manipulated by application programs. Data can be bu�ered

either by allocating bu�ers and transferring data between PersistentStores and the bu�ers or by

mapping the PersistentStore into virtual memory.

Subclasses of the MemoryObjectCache

8

class provide virtual memory data caching for the

�le system[RC89, MCRL89, Rus91]. They can map any MemoryObject into virtual memory.

By mapping a disk or a disk partition, a MemoryObjectCache e�ectively serves as a disk bu�er

cache. By mapping other PersistentStores, aMemoryObjectCache supports memory-mapped �les

or memory-mapped persistent objects.

Each memory-mapped PersistentStore has a single MemoryObjectCache that maintains phys-

ical memory management information associated with virtual memory. The information is kept

in a machine-independent and virtual memory address independent form. This allows a Persis-

tentStore to be mapped into multiple regions of a virtual address space.

8

The design of MemoryObjectCaches is primarily the work of other members of the Choices project, including

Roy Campbell, Gary Johnston, Ken MacGregor, Vincent Russo, and Aamod Sane.

68

MemoryObjectCaches also support distributed virtual memory[JC89]. They can be cus-

tomized to support various page placement, page replacement, consistency, and coherency poli-

cies.

5.2.5.1 PersistentArrays

The PersistentArray subclass of PersistentObject abstracts various kinds of arrays of persistent

data, which are shown in Figure 5.14. All subclasses of PersistentArray de�ne two operations, at

and atPut, which retrieve and store elements of the array. These subclasses serve two purposes in

the framework: they structure the data in a �le as an array of bytes or words, and they abstract

the building-blocks of record-oriented �les. Because they de�ne arrays with either di�erent

element-types or index-types, they de�ne di�erent signatures (sets of argument types) for both

operations; therefore, there is no bene�t in de�ning the operations in their superclass. All

subclasses inherit all their state variables from PersistentObject and PersistentArray. They also

inherit bu�er management operations from PersistentArray. Figure 5.15 contains a simpli�ed

version of the C++ declaration for class PersistentArray.

PersistentArray

FileIndex

PersistentCharArray SymbolicLink

PersistentIntArray

Figure 5.14: Persistent Array Class Hierarchy

A PersistentArray has a pointer to the data in the array. If the array is mapped into virtual

memory, then the pointer stores the address where the data are mapped; otherwise, the pointer

stores the address of a bu�er allocated for the array. The size operation returns the number of

elements currently in the array. The setSize operation sets the number of elements in the array

to the value of its argument. If the new size is smaller than the current size, it truncates the

array. The grow operation performs the following steps if and only if the array is not mapped

into virtual memory: it allocates a new bu�er large enough to store an array of the given size,

copies the array's existing data to the bu�er, and then frees the old bu�er. The basicAt and

basicAtPut operations support the at and atPut operations of subclasses by hiding the details

69

class PersistentArray : public PersistentdObject {

public:

PersistentArray(PersistentStore * source);

unsigned int size();

unsigned int setSize();

protected:

char * _arrayBuffer;

void grow(int units);

int basicAt(unsigned int index, char * values, unsigned int count);

int basicAtPut(unsigned int index, char * values, unsigned int count);

};

Figure 5.15: Class Declaration: PersistentArray

of bu�er management. For example, the basicAtPut will invoke the grow operation if the index

of the data to be stored exceeds the upper bound of the array.

5.2.5.2 PersistentCharArrays

The PersistentCharArray class abstracts �les structured as arrays of bytes, for example, the

regular data �les of the UNIX operating system. Figure 5.16 contains a simpli�ed version of

the C++ declaration for class PersistentCharArray. PersistentCharArray de�nes at and atPut to

retrieve and store consecutive elements of an array with a character element type and an integer

index type. Both operations return the number of elements transferred.

class PersistentCharArray : public PersistentArray {

public:

PersistentCharArray(PersistentStore * source);

int at(unsigned int index, char * values, unsigned int count);

int atPut(unsigned int index, char * values, unsigned int count);

};

Figure 5.16: Class Declaration: PersistentCharArray

70

5.2.5.3 PersistentIntArrays

The PersistentIntArray class abstracts �les structured as arrays of integers. Applications can

use PersistentIntArrays for data �les, but this class is primarily designed as a building-block

for other �le types. Figure 5.17 contains a simpli�ed version of the C++ declaration for class

PersistentIntArray.

class PersistentIntArray : public PersistentArray {

public:

PersistentIntArray(PersistentStore * source);

int init(int argc, char *argv[], FileSystemInterface * = 0);

int at(unsigned int index);

int atPut(unsigned int index, int value);

};

Figure 5.17: Class Declaration: PersistentIntArray

PersistentIntArray de�nes at and atPut to retrieve and store a single element of an array with

an integer element type and an integer index type. The at operation returns the stored integer

or zero if the index is out of range. The atPut operation also returns the stored integer. The

init operation allows programs to specify the size of each element (either 1, 2, or 4 bytes). The

default is the size of an integer in the C++ programming language.

5.2.5.4 RecordFiles

Traditionally the data in �les are structured as collections of records. The RecordFile class

abstracts �les that are structured in this way. The concrete subclasses of RecordFile presented

in Section 5.3 illustrate how PersistentArrays can be used as building blocks for more complex �le

structures. Figure 5.18 contains a simpli�ed version of the C++ declaration for class RecordFile,

which de�nes the interface for its subclasses.

The read and write operations allow single records to be retrieved from and stored to the

�le. The numberOfRecords operation returns the number of the �le's last record. The mini-

mumRecordSize and maximumRecordSize operations return the size of the smallest and largest

records in the �le, respectively.

71

class RecordFile : public AutoloadPersistentObject {

public:

RecordFile(PersistentStore * source);

void flush();

int read(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int write(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int numberOfRecords();

int minimumRecordSize();

int maximumRecordSize();

protected:

PersistentCharArray * _data;

unsigned int _minRecordSize;

unsigned int _maxRecordSize;

};

Figure 5.18: Class Declaration: RecordFile

72

A RecordFile has a reference to a PersistentCharArray that encapsulates the unstructured

data of the �le, and variables to store the smallest and largest record sizes. The
ush operation

ensures that the reference to the PersistentCharArray is in a format suitable for persistent storage.

The
ush operation is normally invoked only when a PersistentObject is deactivated and its data

are written back to its PersistentStore.

5.2.5.5 FileIndexes

The FileIndex class abstracts indices that map key values to record numbers. This class serves as

a building-block for IndexedRecordFiles, which are presented in Section 5.3. Figure 5.19 contains

a simpli�ed version of the C++ declaration for class FileIndex.

class FileIndex : public PersistentArray {

public:

FileIndex(PersistentStore * source);

int init(int argc, char *argv[], FileSystemInterface * = 0);

int at(char * key, ErrorCode &);

int atPut(char * key, int value, ErrorCode &);

int atNext(char * key, ErrorCode &);

int atDelete(char * key, ErrorCode &);

protected:

int findKey(char * key, ErrorCode &);

int insertKey(char * key, ErrorCode &);

};

Figure 5.19: Class Declaration: FileIndex

FileIndex de�nes at, atNext, and atPut to retrieve and store a single element of an array with

an integer element type and a string index-type. The at operation returns the stored integer if

the index is found; otherwise, an error code is returned. The atNext operation returns the stored

integer if the index is found; otherwise, an error code is returned. It also returns the value of

the next key. The atPut operation also returns the stored integer, if the key did not already

exist; otherwise, an error code is returned. The atDelete operation removes the element of the

array that corresponds to the key argument, if such an element exists; otherwise, it returns an

error code. The init operation allows programs to specify the size of the keys.

73

The FileIndex class can be subclassed to give applications a choice of various algorithms to

store and retrieve sets of keys e�ciently. Currently the FileIndex class uses an insertion sort

algorithm when storing keys and a binary search algorithm when retrieving keys. Subclasses

can rede�ne �ndKey and insertKey operations to implement other algorithms.

5.2.5.6 User-de�ned Persistent Objects

Files structured as PersistentObjects di�er from other data �les in three fundamental ways:

� they provide a persistent data abstraction, encapsulate data, allow user de�ned operations,

and impose a notion of type. Usually, the operations de�ned for regular data �les are

only read and write or at and atPut.

� their operations can store, retrieve, and dereference references to other persistent objects.

� invocation of an operation ensures that the encapsulated persistent data are retrieved.

Both the retrieval and storage of data are automated and do not require explicit opens,

reads, writes, and closes.

Providing the notion of a persistent object as an operating system service allows it to be used as

a powerful concept with which to build other, both conventional and unconventional, services.

The three features of a persistent object allow, for example, the convenient programming of a

conventional �le directory as a persistent object in Choices . Operations allow the contents of

a directory to be listed in a readable format, to be searched for the location of a particular �le

name, or to be updated with the addition or removal of a �le name.

Choices is not limited to a single application programming language. Currently, how-

ever, I have implemented persistence in Choices only for objects that are programmed using

C++[Str86]. In addition, these persistent objects have the following restrictions:

� they must be instances of subclasses of the PersistentObject class, and

� they can store references only to other persistent objects.

As long as system programmers do not violate the restrictions stated above, they can de-

sign the operations and structures of persistent objects as they would design other C++ objects.

Nevertheless, there are a few operations that must be de�ned for concrete subclasses of Persis-

tentObject; see Chapter 6 for information about these operations.

74

5.2.5.7 AutoloadPersistentObjects

Some kinds of PersistentObjects, for example PersistentStoreContainers, need complete control

over how they cache their data or map it into memory. The classes that abstract these kinds

of objects can de�ne functions to manage their memory mapping; many subclasses of Persis-

tentObject, however, do not need to de�ne their own mapping functions. These subclasses can

inherit memory mapping functions from the AutoloadPersistentObject class.

class AutoloadPersistentObject : public PersistentdObject {

public:

AutoloadPersistentObject(PersistentStore * source);

protected:

void noRemainingReferences();

};

Figure 5.20: Class Declaration: AutoloadPersistentObject

Figure 5.20 contains a simpli�ed version of the C++ declaration for class AutoloadPersistent-

Object. Subclasses can inherit the noRemainingReferences operation, which automatically writes

the persistent data of an object back to its PersistentStore when the object is no longer needed

in primary memory. The PersistentStore::asA operation automatically loads the persistent data

of an AutoloadPersistentObject into memory when the object is activated.

5.2.6 Application Interface Objects

The interfaces provided by the �le-structuring PersistentObjects presented in the previous section

are abstract enough to be used directly by application programs; but �le systems commonly

de�ne an additional layer of abstraction between �les and application programs.

For naming objects, the FileSystemInterface and MountTable classes provide this extra layer

by organizing all other naming objects into a hierarchy of dictionaries. For regular �les, sub-

classes of the RecordStream class, which are shown in Figure 5.31, provide a common application

interface.

75

5.2.6.1 MountTables

A MountTable is a dynamic, associative, bidirectional function that maps PersistentStores called

mount-points to PersistentStores called mounted-stores . Figure 5.22 contains a simpli�ed version

of the C++ declaration for class MountTable. A MountTable is implemented as a linked list of

MountAssociations, which are ordered pairs of references to PersistentStores. Figure 5.21 contains

a simpli�ed version of the C++ declaration for class MountAssociation.

class MountAssociation : public Base {

public:

MountAssociation(MountAssociation *, PersistentStore * mountPoint,

PersistentStore * mountedStore);

MountAssociation * lookupMounted(PersistentStore *);

MountAssociation * lookupMountPoint(PersistentStore *);

PersistentStore * mountPoint();

PersistentStore * mounted();

MountAssociation * next();

protected:

MountAssociation * _next;

MountAssociation * _previous;

PersistentStore * _mountPoint;

PersistentStore * _mounted;

void setNext(MountAssociation *);

void setPrevious(MountAssociation *);

};

Figure 5.21: Class Declaration: MountAssociation

MountTables provide the add operation to add a single mapping and the remove operation

to remove a single mapping. The openMounted operation returns the mounted-store that cor-

responds to a given mount-point, and the openMountPoint operation returns the mount-point

that corresponds to a given mounted-object. To make MountTables complete functions, all Per-

sistentStores that are not explicitly mapped to other PersistentStores are implicitly mapped to

themselves.

76

class MountTable : public Object {

public:

MountTable();

MountTable(MountTable *);

int synchronize();

int add(PersistentStore * mountPoint, PersistentStore * mountedStore);

int remove(PersistentStore *);

PersistentStore * openMounted(PersistentStore *);

PersistentStore * openMountPoint(PersistentStore *);

protected:

MountAssociations * _mountItems;

};

Figure 5.22: Class Declaration: MountTable

5.2.6.2 FileSystemInterface

A FileSystemInterface uni�es the name-spaces provided by PersistentStoreDictionaries, Symbolic-

Links, and MountTables by parsing sequences of symbolic keys, called pathnames, and resolving

them to the logical names of PersistentObjects. Each symbolic name is interpreted sequentially

by the instance of PersistentStoreDictionary speci�ed by the pathname pre�x composed of the

previous symbolic names. A FileSystemInterface uses a MountTable to organize all dictionaries

into a single tree. FileSystemInterfaces not only provide a uni�ed naming interface for appli-

cation programs, but they also ensure a consistent usage of features like mount tables and

symbolic links. Furthermore, a FileSystemInterface can function as a name server by integrating

the naming of devices or processes with the naming of �les. For example, the UNIX �le system

contains device names in a directory called \/dev."

An example of a FileSystemInterface is the UNIX �le system interface, which uses a root

directory, a current directory, and a mount table to provide a uni�ed name space for all �les

within a computer system. A FileSystemInterface that implements the BSD version of UNIX

�le naming would also use SymbolicLinks.

Figure 5.23 contains a simpli�ed version of the C++ declaration for class FileSystemInterface.

A FileSystemInterface has \root" and \current" dictionaries, a MountTable, and a Semaphore.

77

class FileSystemInterface : public Object {

public:

FileSystemInterface(PersistentStoreDictionary *);

FileSystemInterface(FileSystemInterface *, int deepCopyMountTable);

Object * open(char * path, Class * interfaceClass, ErrorCode &,

int flags = 0, int mode = 0, Class * objectClass = 0);

ErrorCode info(char *, FileInfo *, int followLinks);

ErrorCode add(char * key, File *);

ErrorCode link(char *, char *, int overwrite);

ErrorCode unlink(char *);

ErrorCode mount(char *, char *);

ErrorCode unmount(char *);

ErrorCode mkdir(char *);

ErrorCode chdir(char *);

ErrorCode chroot(char *);

ErrorCode synchronize();

protected:

PersistentStoreDictionary * _root;

PersistentStoreDictionary * _current;

MountTable * _mountTable;

Semaphore * _mutex;

PersistentStoreDictionary * basicFindDictionary(char * path, char * & key,

PersistentStoreDictionary *, int links);

PersistentStoreDictionary * findDictionary(char * path, char * & key,

PersistentStoreDictionary *, int links);

PersistentStore * pathOpen(char * path, ErrorCode &,

PersistentStoreDictionary *,

int follow, int links);

PersistentStore * pathCreate(char * path, Class *, ErrorCode &);

PersistentStore * substituteLink(PersistentStoreDictionary *,

PersistentStore *,

ErrorCode &, int links);

ErrorCode changeDictionary(PersistentStoreDictionary * &, char * path);

};

Figure 5.23: Class Declaration: FileSystemInterface

78

The Semaphore provides mutual exclusion for the operations that modify the other three state

variables.

The public operations of the FileSystemInterface are similar to several UNIX system calls

including:

� open, which returns a reference to the object that is named by the �rst argument and is

an instance of the Class given by the second argument,

� info,

9

which returns status information about the object named by the �rst argument,

� link, which creates a symbolic name given in the second argument for the object named

by the �rst argument,

� add,

10

which creates a symbolic name given in the �rst argument for the object referred

to by the second argument,

� unlink, which deletes the given symbolic name for the object named by its argument,

� mount, which adds to the MountTable a MountAssociation referring to the object named

by the �rst argument as the mount-point and the object named by the second argument

as the mounted-store,

� unmount, which removes from the MountTable the MountAssociation that has the object

named by the argument as the mounted-object,

� mkdir, which creates a directory and names it with the given symbolic name,

� chdir, which changes the current dictionary to the one named by the argument, and

� chroot, which changes the root dictionary to the one named by the argument.

These operations manipulate or return references to RecordStreams, PersistentObjects, or Per-

sistentStores.

9

The info operation corresponds to the stat(2) system call in the UNIX operating system.

10

This add does not correspond to any system call in the UNIX operating system. It does, however, resemble

the add operation of PersistentStoreDictionaries, except that it uses pathnames instead of single-element �le names.

79

5.2.6.3 RecordStreams

RecordStreams provide the concept of a current �le position, i.e. the location within the �le

where the next read or write will occur. Figure 5.24 contains a simpli�ed version of the C++

declaration for class RecordStream. A RecordStream has a reference to a PersistentObject and a

record number variable.

class RecordStream : public Object {

public:

RecordStream(PersistentObject * po);

int init(int argc, char *argv[]);

int read(char * buffer, int size, ErrorCode &);

int write(char * buffer, int size, ErrorCode &);

int recordNumber();

int setRecordNumber(int delta, int mode);

int numberOfRecords();

int setNumberOfRecords(int count);

int recordSize();

int minimumRecordSize();

int maximumRecordSize();

void info(FileInfo *);

protected:

int _recordNumber;

PersistentObject * _file;

};

Figure 5.24: Class Declaration: RecordStream

Because RecordStreams introduce the concept of a current �le position, they support the

setRecordNumber operation, which allows programs to reset the current position, and the record-

Number operation, which returns the current position. Application programs can read from and

write to RecordStreams sequentially. The read and write operations also update the �le position.

Each instance of RecordStream gets data from or sends data to an underlying PersistentObject.

80

RecordStreams forward several operations directly to their PersistentObject, including: init,

info, numberOfRecords, setNumberOfRecords, recordSize, minimumRecordSize, and maximum-

RecordSize.

5.2.6.4 PersistentArrayStreams

PersistentArrayStreams are RecordStreams that support the sequential reading and writing of

PersistentArrays. Figure 5.25 contains a simpli�ed version of the C++ declaration for class

PersistentArrayStream.

class PersistentArrayStream : public RecordStream {

public:

PersistentArrayStream(PersistentObject * source);

int read(char * buffer, int size, ErrorCode &);

int write(char * buffer, int size, ErrorCode &);

protected:

PersistentCharArray * _file;

};

Figure 5.25: Class Declaration: PersistentArrayStream

To support the UNIX concept of �le streams, PersistentArrayStreams rede�ne the read and

write so that they can transfer multiple consecutive bytes during a single invocation. Both

operations return the number of bytes successfully transferred.

5.2.7 Protection

The �le system provides three types of protection for persistent data:

1. all manipulation of persistent data must be performed by a PersistentObject,

2. access to a PersistentObject is restricted to processes executing within Domains that have

established the right to access it, and

3. some PersistentObjects check permissions for each operation.

81

Processes use their Domain's list of Capabilities to access PersistentObjects. To be able to

create a Capability to access a PersistentObject, the AuthenticationId

11

of the Domainmust match

one of the AuthenticationIds stored in the AccessList of each PersistentObject.

5.2.7.1 AuthenticationIds and AccessLists

The current implementation of my model simply uses the UNIX and MS-DOS protection mod-

els. In the UNIX model, PersistentStores have three access modes: read, write and execute,

and they identify three sets of users: the owner, a group, and others. Nine
ags specify which

modes each set of users can enter. In the MS-DOS model, PersistentStores have two access

modes: read and read-write, and they treat all users as the owners. A single
ag speci�es which

modes users can enter.

5.2.7.2 Capabilities

In the Choices operating system, the capability mechanism is provided by the ObjectProxy

class[Rus91]. ObjectProxies cannot be forged by applications and are protected by hardware,

usually by the virtual memory hardware and the privileged instruction mode of the CPU.

5.3 Extensions to the Framework

The previous section describes the two fundamental classes of the framework (PersistentStore

and PersistentObject), subclasses that support persistent data storage (Disk and File), sub-

classes that support storage organization, naming, and structuring (PersistentStoreContainer,

PersistentStoreDictionary, PersistentArray, AutoloadPersistentObject and RecordFile), and appli-

cation interface classes (FileSystemInterface and RecordStream). This section shows how the

framework can be extended by building on primitive PersistentObjects such as subclasses of

PersistentArrays. It describes how they can combined to build classes that structure data as

collections of records. It also describes classes that provide interfaces for these extended types

of persistent objects.

11

An AuthenticationId identi�es the user for whom processes within the Domain are executing.

82

5.3.1 File Data Structures

Several kinds of records and record �les are presented in the discussion of the VMS operat-

ing system in Section 4.3. The framework currently contains four subclasses of the abstract

RecordFile class, shown in Figure 5.26, that represent four combinations of record and �le types:

sequential �xed-length record �les, sequential variable-length record �les, relative �xed-length

record �les, and indexed �xed-length record �les. These classes illustrate how the Persistent-

Arrays can be used as building blocks for more complex �le structures.

RecordFile

FixedRecordFile RelativeRecordFile IndexedRecordFile

VariableRecordFile

Figure 5.26: Record Structuring Class Hierarchy

5.3.1.1 FixedRecordFiles

The FixedRecordFile class abstracts sequential, �xed-length record �les. Figure 5.27 contains

a simpli�ed version of the C++ declaration for class FixedRecordFile. The init operation allows

programs to set the record size. The numberOfRecords operation returns the number of records

stored in the �le, which it calculates by dividing the size of the inherited PersistentCharArray

by the recordSize.

The read operation retrieves the data that correspond to the record number argument, if

the record exists (the record number is not past the end of the �le); otherwise, it returns an

error code. The write operation stores the data to be written that correspond to the record

number argument, if the record number is at the end of the �le; otherwise, it returns an error

code.

5.3.1.2 VariableRecordFiles

The VariableRecordFile class abstracts sequential �les with variable-length records. Figure 5.28

contains a simpli�ed version of the C++ declaration for class VariableRecordFile. The init opera-

tion initializes the object's state, which consists of a PersistentIntArray that stores the o�sets of

83

class FixedRecordFile : public RecordFile {

public:

FixedRecordFile(PersistentStore * source);

int init(int argc, char *argv[], FileSystemInterface * = 0);

int read(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int write(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int numberOfRecords();

};

Figure 5.27: Class Declaration: FixedRecordFile

each record within the inherited PersistentCharArray. The numberOfRecords operation returns

the number of records stored in the �le, which is equal to the size of the PersistentIntArray.

The read operation retrieves the data that correspond to the record number argument, if

the record exists (the record number is not past the end of the �le); otherwise, it returns an

error code. The write operation stores the data to be written that correspond to the record

number argument, if the record number is at the end of the �le; otherwise, it returns an error

code.

5.3.1.3 RelativeRecordFiles

The RelativeRecordFile class specializes the FixedRecordFile class to abstract relative �les. Fig-

ure 5.29 contains a simpli�ed version of the C++ declaration for class RelativeRecordFile. The

init operation initializes the object's state, which consists of a PersistentIntArray that stores the

ags indicating whether each cell is full or empty. The PersistentIntArray is initialized to store

1-byte integers. Both full and empty cells are stored within the inherited PersistentCharArray.

The numberOfRecords operation returns the number of cells in the �le, which is equal to the

size of the PersistentIntArray.

The read operation retrieves the data from the cell that corresponds to the record number

argument, if the cell is not empty; otherwise, it returns an error code. The write operation

stores the data to be written in the cell that corresponds to the record number argument, if

84

class VariableRecordFile : public RecordFile {

public:

VariableRecordFile(PersistentStore * source);

int init(int argc, char *argv[], FileSystemInterface * = 0);

void flush();

int read(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int write(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int numberOfRecords();

protected:

PersistentIntArray * _control;

};

Figure 5.28: Class Declaration: VariableRecordFile

class RelativeRecordFile : public FixedRecordFile {

public:

RelativeRecordFile(PersistentStore * source);

int init(int argc, char *argv[], FileSystemInterface * = 0);

void flush();

int read(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int write(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int update(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

void delete(unsigned int record, ErrorCode &);

protected:

PersistentIntArray * _control;

};

Figure 5.29: Class Declaration: RelativeRecordFile

85

the cell is empty; otherwise, it returns an error code. The update operation stores the data to

be written in the cell that corresponds to the record number argument; otherwise, it returns

an error code. The delete operation marks the the cell that corresponds to the record number

argument as empty, if the cell is not empty; otherwise, it returns an error code.

5.3.1.4 IndexedRecordFiles

The IndexedRecordFile class specializes the RelativeRecordFile class to abstract indexed �les.

Figure 5.30 contains a simpli�ed version of the C++ declaration for class IndexedRecordFile.

The init operation initializes the object's state, which consists of a count of the number of

indices the �le has, an array of up to 255 FileIndexes that stores the keys for each record in the

�le, and arrays containing the starting location and lengths of keys within the �le's records.

IndexedRecordFiles must have at least one key, the primary key.

The read operation retrieves the data from the cell that corresponds to the record number

argument, if the cell is not empty; otherwise, it returns an error code. The write operation

stores the data to be written in the cell that corresponds to the record number argument, if

the cell is empty; otherwise, it returns an error code. The update operation stores the data to

be written in the cell that corresponds to the record number argument; otherwise, it returns

an error code. Both the write and update operations also extract the values of the keys for the

record being written and store them in the appropriate FileIndexes. The delete operation marks

the the cell that corresponds to the record number argument as empty, if the cell is not empty;

otherwise, it returns an error code. It also deletes the values of the keys for the record being

deleted from the appropriate FileIndexes.

The keyToRecord operation returns the record number that corresponds to the given index

number and key, if the key exists; otherwise, it returns an error code. The keyToRecordNext

operation also returns the record number that corresponds to the given index number and key, if

the key exists; otherwise, it returns an error code. It supports sequential access of the records in

an indexed �le by also returning the value of the next key in the same index. These operations

use the at and atNext operations provided by the FileIndex class.

86

class IndexedRecordFile : public RelativeRecordFile {

public:

IndexedRecordFile(PersistentStore * source);

int init(int argc, char *argv[], FileSystemInterface * = 0);

void flush();

int read(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int write(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

int update(unsigned int record, char * buffer,

unsigned int size, ErrorCode &);

void delete(unsigned int record, ErrorCode &);

int keyToRecord(int index, char * key, ErrorCode &);

int keyToRecordNext(int index, char * key, ErrorCode &);

protected:

unsigned int _indices;

FileIndex * _index[255];

unsigned int _start[255];

unsigned int _length[255];

};

Figure 5.30: Class Declaration: IndexedRecordFile

87

5.3.2 Application Interface Objects

Three subclasses of the RecordStream class, shown in Figure 5.31, provide interfaces for both

sequential and random access to the classes of record �les described above.

RecordStream

FixedRecordStream

IndexedRecordStream

PersistentArrayStream

VariableRecordStream

Figure 5.31: Record Stream Class Hierarchy

5.3.2.1 FixedRecordStreams

FixedRecordStreams are RecordStreams that support the sequential reading and writing of Fixe-

dRecordFiles. Figure 5.32 contains a simpli�ed version of the C++ declaration for class Fixed-

RecordStream.

class FixedRecordStream : public RecordStream {

public:

FixedRecordStream(PersistentObject * source);

int read(char * buffer, int size, ErrorCode &);

int write(char * buffer, int size, ErrorCode &);

protected:

FixedRecordFile * _file;

};

Figure 5.32: Class Declaration: FixedRecordStream

5.3.2.2 VariableRecordStreams

VariableRecordStreams are RecordStreams that support the sequential reading and writing of

VariableRecordFiles. Figure 5.33 contains a simpli�ed version of the C++ declaration for class

VariableRecordStream.

88

class VariableRecordStream : public RecordStream {

public:

VariableRecordStream(PersistentObject * source);

int read(char * buffer, int size, ErrorCode &);

int write(char * buffer, int size, ErrorCode &);

int minimumRecordSize();

int maximumRecordSize();

protected:

VariableRecordFile * _file;

};

Figure 5.33: Class Declaration: VariableRecordStream

5.3.2.3 IndexedRecordStreams

IndexedRecordStreams are RecordStreams that support the sequential reading and writing of

IndexedRecordFiles. Figure 5.34 contains a simpli�ed version of the C++ declaration for class

IndexedRecordStream.

The concept of a current �le position for IndexedRecordStreams di�ers from that of other

RecordStreams. An IndexedRecordFile can be read sequentially using the keys of any of its

indices. The setIndexNumber allows an application to choose which FileIndex should be used for

subsequent read invocations. The operation returns an error code if the �le does not have an

index that corresponds to the given argument number. The setNextKey allows an application

to reset the �le position by setting the value of the next key that will be looked up.

5.4 Constraints on the Framework

The framework presented in this chapter is both an abstract model of �le systems and a practical

design for �le system construction. To build a working �le system, one must combine compo-

nents that belong to the following categories: physical storage devices, storage organization

and sharing, logical storage devices, naming objects, �le structuring objects, and application

interfaces objects. If the set of classes in the framework includes the necessary concrete classes,

the job of the �le system designer is greatly simpli�ed. Even if some concrete classes are miss-

89

class IndexedRecordStream : public RecordStream {

public:

IndexedRecordStream(PersistentObject * source);

int read(char * buffer, int size, ErrorCode &);

int write(char * buffer, int size, ErrorCode &);

int update(char * buffer, int size, ErrorCode &);

void delete(ErrorCode &);

ErrorCode setIndexNumber(int indexNumber);

void setNextKey(char * nextKey);

protected:

char * _nextKey;

int _indexNumber;

IndexedRecordFile * _file;

};

Figure 5.34: Class Declaration: IndexedRecordStream

ing, the job of the �le system designer is straightforward; see Chapter 6 for details on building

concrete subclasses.

Besides the type declarations of the abstract classes' data structures and operations, the

framework contains both external and internal constraints that limit how components can be

combined. The external constraints are imposed by both software and hardware outside the

�le system, whereas the internal constraints are imposed by objects within the framework.

If one designs a �le system to be stored on a SCSI disk, one must include an object using

the SCSI protocols to communicate with the disk controller. If one designs a �le system that

uses the same disks as a BSD UNIX operating system, one must include objects that belong to

BSD-speci�c subclasses of PersistentStoreContainer, File, and PersistentStoreDictionary. These

concrete subclasses must correctly interpret and preserve the data structures de�ned by the

BSD UNIX �le system. If one designs a system to support application programs that require

ISAM �les, one must include objects that belong to application interface classes that provide

indexed and sequential �le access.

These examples illustrate three common external constraints:

� physical storage devices must conform to the protocols of controllers in the I/O subsystem;

90

� storage organization, storage sharing, and logical storage devices must be compatible with

on-disk formats if compatibility with data stored by other operating systems is desired;

and

� application interface objects must provide the operations required by the application

programs that will be their clients.

If one includes IndexedRecordStreams in the �le system, one must also include IndexedRecord-

Files. Furthermore, IndexedRecordFiles require the inclusion of various kinds of PersistentArrays.

If one build a �le system that supports an extensible set of persistent objects types, one must

include Files that can store these types. If one includes BSDContainers in the �le system, one

must include BSDInodes, since BSDContainers explicitly instantiate BSDInodes.

These examples illustrate three common internal constraints:

� persistent objects must provide the operations required by the application interface objects

and by other persistent objects,

� storage management objects must provide the operations required by the persistent ob-

jects,

� objects that belong to some classes instantiate other objects that belong to speci�c classes.

5.5 Summary

This chapter describes the abstract classes in the �le system framework. System programmers

can construct concrete subclasses and combine them to build both conventional and experi-

mental �le systems. Application programmers can use the interfaces provided by the abstract

classes to access the data stored within a �le system built within the framework.

This chapter also categorizes the abstract classes into two groups:

� PersistentStores abstract persistent data storage devices, which store and retrieve blocks

of data using a random access method, and

� PersistentObjects abstract objects that encapsulate and provide a better interface to the

data managed by a persistent store.

91

Subclasses of PersistentStore, Disk and File, represent physical and logical storage devices,

respectively. Subclasses of PersistentObject represent the following �le system characteristics:

� storage device organization and sharing (PersistentStoreContainer),

� naming (PersistentStoreDictionary and SymbolicLink), and

� data structuring (PersistentArray, RecordFile, and AutoloadPersistentObject).

The framework is also designed to build layered systems. The lowest layers are Storage

Management Layers, and they contain PersistentStores and PersistentStoreContainers. Above

them is the Persistent Object Layer, which comprises naming and data structuring objects.

The top layer is the Application Interface Layer, which contains objects that provide addi-

tional protocols for clients of the �le system. The classes of objects in the top layer include

RecordStreams and the FileSystemInterface class.

This chapter demonstrates how the framework supports the persistent object types of

stream-oriented, record-oriented, and object-oriented �le systems. There are many ways one

could provide the necessary support, many of which would be neither simple nor extensible.

The approach taken in this thesis, however, achieves both goals, because the exact same fea-

tures that support the persistent objects of object-oriented �le systems also support the persistent

objects of record-oriented �le systems . These features are:

1. each persistent object belongs to an extensible set of classes,

2. each class of persistent objects can de�ne both data structures and a set of operations,

3. persistent objects are allowed to refer to other persistent objects using object identi�ers

instead of symbolic names,

12

4. persistent objects can be automatically retrieved and stored without requiring application

programs to explicitly open them.

12

In the UNIX and MS-DOS �le systems, only directories can refer to �les using �le identi�ers.

92

Chapter 6

Building Concrete Subclasses

This chapter describes how one can extend the framework by adding concrete subclasses of the

abstract classes presented in Chapter 5. This chapter also mentions several concrete subclasses

that currently belong to the Choices class hierarchy. Examples of these classes are discussed in

detail in Appendix B.

Abstract classes can be considered single-class frameworks [Deu89]. To build a concrete class

within one of these frameworks, one must re-implement or overload some of the operations

de�ned by the abstract superclass; therefore, this chapter concentrates on the operations that

have been designed to be overloaded.

1

When feasible, abstract classes provide a default behavior

for these operations, which can be inherited by subclasses.

One must also de�ne instance variables and structures that conform to the layouts or formats

de�ned by the hardware, operating system, or tool that the concrete class is designed to abstract.

Because instance variables are easy to de�ne for concrete classes and di�cult to generalize, this

chapter does not cover the de�nition of instance variables.

Using terminology from [Deu89], one can identify three sets of operations in a framework,

including single-class frameworks. The �rst set of operations, called the \framework external

interface," contains those used by classes outside the framework. The second set of operations,

called the \framework internal interface," forms the interface between abstract classes and

their subclasses. And the third set of operations, called the \resulting interface," contains the

external interface operations plus any supplied by a concrete subclass.

1

In C++, operations that are designed to be overloaded are declared as virtual functions in the abstract class's

de�nition.

93

Most concrete subclasses discussed in this chapter provide resulting interfaces that are

identical to their abstract classes' external interface. Thus they neither add new operations or

remove inherited operations. One set of exceptions are the subclasses of the AutoloadPersis-

tentObject class, which are intended to be new types of objects that add many new operations.

This chapter concentrates on the internal interface of the single-class frameworks within the

Choices �le system framework.

6.1 Subclassing PersistentStores

The PersistentStore class has been subclassed to de�ne several kinds of disks, partitions, �les,

and parts of �les. Figure 6.1 shows the hierarchy rooted at PersistentStore. This section will

primarily discuss the subclassing of Files. For more information on the subclassing of Disks, see

[Kou91].

PersistentStore

Disk

Att6836Disk

MacintoshDisk

MultimaxEMCDisk

PS2Diskette

RAMDisk

RemoteStore

SCSIDisk

File

ArStore

GeneralFile

MailRootStore

MSDOSStore

Partition

TarStore

UNIXInode

AIXInode

BSDInode

LogInode

SVIDInode

Figure 6.1: Persistent Store Class Hierarchy

94

Several kinds of File operations can be overloaded: data transfer (read, write, and copy),

changing attributes (setRecordSize, setNumberOfRecords, and setNumberOfBlocks), and retriev-

ing attributes (recordSize, numberOfRecords, and info). One can overload these operations to

encapsulate a speci�c data structure, to implement a feature not supported by all Persistent-

Stores, or to improve performance.

read and write Disk subclasses can inherit the implementations of read and write shown

in Figures A.3 and A.4. A File subclass that abstracts �xed-length, contiguous windows of

source PersistentStores can inherit the implementations of read and write shown in Figures A.5

and A.6. A File subclass that abstracts variable-length or discontiguous windows of source

PersistentStores must overload read and write to perform the steps shown in Figures 6.2 and 6.3.

int

ExampleFile::read(unsigned int start, int count, char * buf)

{

if((start + count) > _numberOfBlocks) count = _numberOfBlocks - start;

int myBlock = start;

for(int blocksRead = count; count > 0; count--) {

int sourcesBlock = mapBlock(myBlock++, !AddMapping);

if(sourcesBlock == 0) ByteZero(buf, blockSize());

else basicRead(sourcesBlock, 1, buf);

buf += blockSize();

}

return(blocksRead);

}

Figure 6.2: Function De�nition: ExampleFile::read

copy The MemoryObject class provides an implementation of the copy operation that can

be inherited by all subclasses of PersistentStore. Some subclasses, however, overload copy to

improve its performance. These subclasses allow instances to have empty blocks that do not

correspond to blocks allocated from a lower layer (for example, UNIX �le systems[Bac86]).

They improve the performance of copy by not reading and writing empty, unallocated blocks.

95

int

ExampleFile::write(unsigned int start, int count, char * buf)

{

if((start + count) > _numberOfBlocks) _numberOfBlocks = start + count;

int myBlock = start;

for(int blocksWritten = 0; count > 0; count--) {

int sourcesBlock = mapBlock(myBlock++, AddMapping);

if(sourcesBlock == 0) break;

basicWrite(sourcesBlock, 1, buf);

blocksWritten++;

buf += blockSize();

}

return(blocksWritten);

}

Figure 6.3: Function De�nition: ExampleFile::write

supports The PersistentStore class provides an implementation of the supports operation that

is designed to be inherited by its subclasses. This implementation relies on subclasses to

initialize the value of the supports variable. A subclass can use one of the following methods

to determine which Class of PersistentObject it supports:

� the class can be hard-coded to support a speci�c Class (for example, a particular Disk

subclass usually supports a speci�c PersistentStoreContainer class),

� instances can search their persistent data to detect speci�c data structures (identi�ed by

\magic numbers") that correspond to a speci�c Class (for example, the Partition class

searches certain blocks for magic numbers that would identify the format of its data),

� instances can map some class-speci�c data structure to the appropriate Class (for example,

the mode bits of UNIX inodes), or

� instances can store the name of the Class that they support and look up the name in a

kernel NameServer (for example, the GeneralFile class that is described in Section B.4).

96

recordSize Because most of the PersistentStores implemented within the framework do not

implement the concept of records, i.e. they were designed to store data for PersistentCharArrays

only, the default implementation of the recordSize operation returns one. A subclass that can

store data for RecordFiles should de�ne an instance variable to hold the value of the record size,

and it should de�ne the recordSize operation to return the value of this variable.

setRecordSize The default implementation of the setRecordSize operation returns the result

of invoking recordSize. A subclass that can store data for RecordFiles should de�ne the setRecord-

Size operation to set the value of the record size instance variable to match the argument and

return the value of the argument.

numberOfRecords The default implementation of the numberOfRecords operation returns

the numberOfBlocks multiplied by the blockSize and then divided by the recordSize. A subclass

that stores the number of records in an instance variable must overload the numberOfRecords

operation to return the value of that variable.

setNumberOfRecords Subclasses of PersistentStore that do not allow the size of their in-

stances to be changed can inherit the default implementation of the setNumberOfRecords opera-

tion, which returns the result of invoking numberOfRecords. Because the number of records (or

bytes) is stored in data structures that di�er from subclass to subclass, a subclass that allows

the size of its instances to change must overload the setNumberOfRecords operation to perform

the following steps:

1. store the argument in the appropriate instance variable,

2. calculate the number of blocks needed to store the new number of records,

3. invoke the setNumberOfBlocks operation, and

4. return the new number of records.

setNumberOfBlocks Subclasses of PersistentStore that do not allow the size of their in-

stances to be changed can inherit the default implementation of the setNumberOfBlocks oper-

ation, which returns the result of invoking numberOfBlocks. (The numberOfBlocks operation,

97

which returns the value of the numberOfBlocks instance variable, is inherited from Memory-

Range and should not be overloaded by any subclass.) A subclass that allows the size of its

instances to change must overload the setNumberOfBlocks operation to perform the following

steps:

1. if the �le currently has more than the requested number of blocks,

(a) free all blocks that are beyond the new end of the �le,

(b) store the requested number of blocks in the numberOfBlocks instance variable.

2. if the �le currently has less than the requested number of blocks,

(a) allocate blocks for those that are beyond the current end of the �le if needed,

2

(b) store the requested number of blocks in the numberOfBlocks instance variable.

3. return the result of invoking the numberOfBlocks operation.

info The info operation returns the attributes of a PersistentStore and its corresponding Per-

sistentObject. The attributes are returned through a structure that de�nes the union of the

attributes supported by the currently implemented subclasses of PersistentStore. The default

implementation returns only those attributes that are shared by all PersistentStores. A subclass

that stores more attributes for its instances must overload the info operation to return the

values of the additional attributes.

6.2 Subclassing PersistentObjects

constructors and destructors As with any C++ class, one usually de�nes a constructor

and often de�nes a destructor for a subclass of PersistentObject. PersistentObjects, however, use

these two operations di�erently than other objects. Because the constructor is called each time

the persistent object is activated (instead of being called only when the object is created), the

constructor should initialize persistent data only when the object is activated for the �rst time.

Therefore, constructors and destructors primarily initialize and destroy transient, in-memory

2

As mentioned above, some �le systems, including UNIX �le systems[Bac86], allow �les to have empty blocks

that do not correspond to blocks allocated from a lower layer. For such �le systems, allocate calls are unnecessary.

98

data structures used by the object. The constructor for a subclass of PersistentObject should

take a single argument, a reference to an underlying PersistentStore.

Constructor Choices supports the late binding of a class to its code and the dynamic loading

of code for a user-de�ned class. This dynamic behavior is achieved by storing the address of each

class's constructor in its corresponding Class object.

3

Because C++ does not allow programs

to take the address of constructors, each subclass must de�ne a function that encapsulates the

invocation of its constructor. Programs can take the address of such a function; therefore, I call

it an addressable constructor. An example of an addressable constructor is shown in Figure 6.4.

Object *

ExampleConstructor(PersistentStore * source)

{

return(new Example(source));

}

Figure 6.4: Function De�nition: ExampleConstructor

6.3 Subclassing PersistentStoreContainers

The PersistentStoreContainer class has been subclassed to de�ne several di�erent kinds of con-

tainers, including objects that divide disks, partitions, �les, and parts of �les into collections

of Files. Figure 6.5 shows the hierarchy rooted at PersistentStoreContainer. Subclasses that

partition disks (for example, MultimaxEMCContainer) and subclasses that subdivide specially

formatted �les (ArContainer, COFFContainer, MailContainer, and TarContainer) allow access to

existing Files only. Subclasses designed to divide partitions into �les (AIXContainer, BSDCon-

tainer, GeneralContainer, LogContainer, MSDOSContainer, and SVIDContainer) implement the

full PersistentStoreContainer interface and support the creation of new �les.

basicOpen The open operation is the only one de�ned by PersistentStoreContainer that allows

programs to access its Files, and open relies on the subclass's implementation of basicOpen.

Therefore, a subclass must overload basicOpen.

3

See [MCK91] for a discussion of dynamic loading and Class objects in Choices.

99

PersistentStoreContainer

ArContainer

Att6386Container

COFFContainer

DiskContainer

GeneralContainer

MacintoshContainer

MultimaxEMCContainer

MSDOSContainer

MailContainer

MailMessageContainer

SCSIContainer

TarContainer

UNIXContainer

AIXContainer

BSDContainer

LogContainer

SVIDContainer

Figure 6.5: Persistent Store Container Class Hierarchy

100

The basicOpen operation should perform the following steps:

1. determine if the id-number argument corresponds to an existing �le,

2. locate the attributes of the �le,

3. determine which class the �le belongs to,

4. call the constructor with the appropriate arguments for the �le,

5. return the value returned by the constructor if steps 1{3 were successful,

6. otherwise, return an error code.

basicRootId The rootDictionary operation uses the basicRootId operation to identify which

File stores the data for the container's root dictionary. PersistentStoreContainer de�nes basic-

RootId to return the id-number of the �rst File in the container. Therefore, a subclass needs to

overload the basicRootId operation only if the appropriate File is not the �rst one in the con-

tainer. The only step this operation needs to perform is to return the appropriate id-number

to the caller.

About half the subclasses of PersistentStoreContainer overload basicRootId; the rest inherit

the de�nition. One could initialize an instance variable to hold the id-number of the root

dictionary in the subclass's constructor. But since the appropriate id-number is determined by

the class of the container and not by individual instances , it is more space-e�cient to implement

basicRootId as an operation.

basicCreate The create operation, which creates new Files within a container, relies on the

subclass's implementation of basicCreate. Therefore, a subclass that supports the creation of

Files must overload basicCreate.

The basicCreate operation should perform the following steps:

1. determine if there is room for another �le,

2. �nd space to store the attributes of the new �le,

3. initialize the �le's attributes,

101

4. call the constructor with the appropriate arguments for the �le,

5. return the value returned by the constructor if steps 1{3 were successful,

6. otherwise, return an error code.

basicClose Files invoke their container's close operation when they are no longer needed

in primary memory. The close operation relies on the implementation of basicClose in the

PersistentStoreContainer class. This default implementation of basicClose simply deletes the

File's instance variables from primary memory, without changing the �le's attributes or checking

to see if the �le should be removed.

A subclass that supports the removal of Files or that allows Files to have mutable attributes

should overload the basicClose operation to perform the following steps:

1. determine if the �le should be removed from the container,

2. if the �le should be removed, zero the �le's attributes,

3. if the �le's attributes changed, write the attributes to the underlying PersistentStore, and

4. delete the File's instance variables from primary memory.

basicSynchronize A PersistentStoreContainer that supports the creation or removal of Files

or that supports Files with mutable attributes usually caches its state information and the

attributes of its �les. The synchronize operation keeps persistent data consistent with the

cached data by calling basicSynchronize.

A subclass that caches state information should overload the basicSynchronize operation to

perform the following steps:

1. if any state information has been modi�ed since it was read from the underlying Persis-

tentStore, write the modi�ed information to the PersistentStore, and

2. mark the container unmodi�ed.

102

6.4 Subclassing BlockAllocators

PersistentStoreContainers that support the creation and removal of Files usually contain Files

whose size can change. Therefore, they use BlockAllocators to support the allocation and freeing

of data blocks. Figure 6.6 shows the hierarchy rooted at BlockAllocator.

BlockAllocator

BSDBlockAllocator

GeneralBlockAllocator

MSDOSFAT

SVIDBlockAllocator

Figure 6.6: Block Allocator Class Hierarchy

Most concrete subclasses of PersistentStoreContainer that implement the basicCreate opera-

tion have corresponding concrete subclasses of BlockAllocator. However, the AIXContainer class

uses the SVIDBlockAllocator class that was originally designed to be used with the SVIDCon-

tainer class.

Because the allocate and free operations rely on the subclass's implementations of basic-

Allocate and basicFree, a subclass must overload basicAllocate and basicFree.

basicAllocate The basicAllocate operation should perform the following steps:

1. determine if there is a block available for allocation,

2. �nd an available block,

3. update the data structure to re
ect the allocation,

4. return the block number if steps 1{3 were successful,

5. otherwise, return zero.

basicFree The basicFree operation should perform the following steps:

1. determine if the block is currently allocated,

2. if the block has not been allocated, log this severe error,

3. otherwise, update the data structure to make the block available.

103

6.5 Subclassing PersistentStoreDictionaries

The PersistentStoreDictionary class has been subclassed to abstract the dictionaries of several

specially formatted �les and the directories of various standard �le systems. Figure 6.7 shows

the hierarchy rooted at PersistentStoreDictionary.

PersistentStoreDictionary

ArDictionary

BSDDirectory AIXDirectory

HashedBSDDirectory

COFFDictionary

MSDOSDirectory

MailDictionary

MailMessageDictionary

RemoteDictionary

SVIDDirectory SVIDVersionedDirectory

TarDictionary

Figure 6.7: Persistent Store Dictionary Class Hierarchy

The relationship between the PersistentStoreDictionary class and its subclasses di�ers from

the relationships between the PersistentStoreContainer and BlockAllocator classes and their sub-

classes. The operations of the latter classes communicate with the operations of their subclasses

using only the arguments and return values of the subclasses' operations. Because some oper-

ations de�ned by subclasses of PersistentStoreDictionary (for example, �ndKey) need to return

several values to the operations that invoke them, they use several instance variables to com-

municate with the operations that called them.

�ndKey The major PersistentStoreDictionary operations, open, create, add, and remove, all

rely on the subclass's implementation of �ndKey. Because even read-only directories|those that

do not implement the create, add, and remove operations|require the de�nition of �ndKey, a

subclass must overload �ndKey. The open and remove operations use �ndKey only to �nd the

104

location of a key within a dictionary. The create and add operations also use �ndKey to �nd

space to insert the key if it is not already in the dictionary.

The �ndKey operation should perform the following steps:

1. search for the key within the dictionary,

2. set the offset variable to the location of the key if found,

3. set the idNumberOfKey variable to the id-number that corresponds to the key if found,

4. set the emptyOffset variable to the location of space for the key if space was found and

if the neededSize argument was non-zero,

5. otherwise, set emptyOffset to -1,

6. return one if the key was found,

7. otherwise, return zero.

basicKeys PersistentStoreDictionaries de�ne the keys and associations operations to support

programs that iterate over their elements (for example, the UNIX ls command). Because the

keys and associations operations rely on the subclass's implementations of basicKeys and basic-

Associations, a subclass should overload basicKeys and basicAssociations. Because the isEmpty

operation also uses the basicKeys operation to determine if a PersistentStoreDictionary is storing

any keys, a subclass must overload basicKeys.

The basicKeys operation extracts keys from the data structures used by a particular subclass

of PersistentStoreDictionary and returns the keys in a bu�er supplied by the invoker of the keys

operation. It should perform the following steps:

1. copy as many keys as possible if the bu�er address is non-zero,

2. count the number of keys if the bu�er address is zero,

3. return the number of keys copied or counted if step 1 or 2 was successful,

4. otherwise, return an error code.

105

basicAssociations The basicAssociations operation extracts both keys and id-numbers from

the data structures used by a particular subclass of PersistentStoreDictionary and returns them

in a bu�er supplied by the invoker of the associations operation. It should perform the following

steps:

1. copy as many keys and id-numbers as possible to the given bu�er,

2. return the number of keys copied if step 1 was successful,

3. otherwise, return an error code.

associationSize The create and add operations use associationSize to determine how large

an association

4

would be for a given key size. A subclass that supports the create and add

operations must overload associationSize to return the size of an association given the length of

the key.

insertAssociation The create and add operations use the insertAssociation operation to store

an association for a key that is not already in the dictionary. A subclass that supports the create

or add operations must overload insertAssociation to perform the following steps:

1. create an association for the given key and id-number,

2. if the value of the emptyOffset variable is -1, extend the dictionary to have enough

space for the new association,

3. store the new association,

4. if the dictionary uses a more complex data structure than an array, update the rest of the

data structure to be consistent with the addition of the new association, and

5. set the modified
ag to true.

4

I call <key, id-number> pairs Associations, which is the Smalltalk terminology for the elements of a Dictio-

nary. The elements of dictionaries can also be called entries.

106

clearAssociation The remove operation uses the clearAssociation operation to reset an as-

sociation for a key that is to be removed from the dictionary. A subclass that supports the

remove operation must overload clearAssociation to perform the following steps:

1. zero the storage for the old association,

2. if the dictionary uses a more complex data structure than an array, update the rest of the

data structure to be consistent with the removal of the old association, and

3. set the modified
ag to true.

6.6 Subclassing Other Kinds of PersistentObjects

One can extend the PersistentObject class hierarchy by adding more than just subclasses of Per-

sistentStoreContainer and PersistentStoreDictionary. The AutoloadPersistentObject, RecordFile,

and PersistentArray classes discussed in Chapter 5 can also be subclassed. For example, the

AutoloadPersistentObject hierarchy has been extended to include a set of classes that demon-

strate the capabilities of PersistentObjects by implementing a simple programming language.

Figure C.1 shows the hierarchy of language classes.

Programmers can de�ne any new operations for subclasses of PersistentObject, but there are

two inherited operations that they may need or want to rede�ne: init and
ush.

init Because the constructor for a PersistentObject is called each time it is activated, and

because the only argument for PersistentObject constructors should be the underlying Persis-

tentStore, the init operation is intended to allow programs to initialize the persistent data of a

PersistentObject. To support an arbitrary number and type of arguments, it uses the traditional

UNIX/C argument-passing mechanism: (int argc, char *argv[], FileSystemInterface

*=0). The optional FileSystemInterface argument can be used if the object will interpret any of

the elements of the argument vector as a pathname. If a FileSystemInterface is supplied as an

argument, it can be used to interpret pathnames; otherwise, the process's default FileSystemIn-

terface can be used.

107

ush Choices uses a set of classes and programmer conventions to support the memory man-

agement of active objects.

5

Currently, these classes and conventions use reference-counting for

all Objects in the system, including active PersistentObjects.

6

References to PersistentObjects

have both a transient and a persistent form. When a persistent object is active, its references

to other objects can be in either form; however, when an object is inactive, its references must

be in their persistent form.

If a class de�nes objects that do not refer to other objects, it can inherit the null
ush

operation from PersistentObject. Otherwise, the
ush operation must be de�ned to convert all

references of an object to their persistent format. This operation is called by the noRemain-

ingReferences operation, which is inherited from the PersistentObject class.

6.7 Summary

The abstract classes in the framework were designed to be subclassed. These abstract classes

include: Disk, File, PersistentObject, PersistentStoreContainer, BlockAllocator, and Persistent-

StoreDictionary. To allow the framework to be extended, these classes de�ne public operations

that all subclasses should support. This enables an instance of any concrete subclass to be used

where an instance of the abstract class is needed.

Several techniques can be used to support the re�nement of the behavior described by the

operations of an abstract class:

� it can implement an operation with abstract code that relies on operations that must be

implemented by subclasses;

� it can de�ne a default behavior for an operation, which can optionally be reimplemented

by subclasses; and

� it can forward an operation to an instance variable that is set by the constructor of the

subclasses.

The Choices �le system framework uses a combination of all the techniques listed here.

5

See [MCK91] for a discussion of garbage collection in Choices.

6

Storage of inactive PersistentObjects can be managed using either reference-counting or other forms of garbage

collection.

108

Even when code cannot be reused through inheritance, the design for concrete subclasses

can be shared. This chapter facilitates design sharing by specifying the intended behavior of

operations that must be implemented by subclasses.

109

Chapter 7

Performance

Within a disk-based computer system, disk latencies dominate �le operation times. To reduce

these delays, �le systems use various caching techniques, such as the bu�er cache used in

UNIX[Bac86] and the memory-mapped �les used in Choices . A bu�er cache allows the �le

system to keep copies of many of the most recently used disk blocks in physical memory. Since

recently accessed blocks are more likely to be reused, the cache can greatly reduce the cost of

reading and writing data blocks. The UNIX bu�er cache is implemented in software. It uses

a least-recently-used bu�er replacement algorithm and hashing to map disk block numbers to

bu�er addresses. In contrast, Choices allows the �le system to reuse the page replacement

algorithms of its virtual memory management system. Instead of using a software mapping,

Choices uses the virtual memory hardware to map requests for disk blocks to bu�er addresses.

Because caching often speeds up �le operations by a factor of ten, I measured operations

both when the operation generated a cache miss and a cache hit. To make comparisons more

signi�cant, I used the same amount of physical memory, two megabytes, for caching disk blocks

in both systems, and I tested the operations in the same order on each system. Also, because

disk latencies vary from access to access, I repeated each test several times and report the mean

value of each measurement and the 95% con�dence interval for the mean.

Because the BSD �le system is the most e�cient of the systems that currently can be built

from within the Choices �le system framework, and because it uses the same on-disk data

structures as Encore's version of UNIX, I have chosen to measure its performance.

110

File open, create and close in microseconds

Operation Cached Choices Encore UNIX

Open existing �le NO 32173 � 62 28812 � 241

Open existing �le YES 4163 � 86 2722 � 14

Open currently open �le YES 2593 � 75 2067 � 86

Create new �le NO 29854 � 939 25546 � 1991

Close �le NO 72208 � 2257 80303 � 22233

Table 7.1: File Access Operation Measurements

7.1 File Access Operations

To use the �le system, an application program must �rst gain access to �les via open or create

operations. Table 7.1 contains measurements of the time it takes to open existing �les and

create new �les. The open operation uses both the current directory to convert a �le name to

an inumber and an in-core inode to convert the inumber to a reference to an open �le object.

Choices takes slightly longer than UNIX to open �les, regardless of whether the disk block

describing the �le is cached. The reason Choices takes longer is that it builds a caching object,

which maps the �le into memory. This small amount of extra overhead for �le opens is expected

to be amortized over the entire time the �le is open. The create operation is similar to the open

operation; I chose to measure an uncached create only, since Choices
ushes modi�ed directory

blocks to the disk after a �le is created. Again, the creation time of a caching object accounts

for the di�erence between creating �les for Choices and for UNIX. I also measured the close

operation for a �le opened in read-only mode. The times are similar for both systems. The

reason the close operation takes 70 to 80 milliseconds is that the in-core inode structure must

be written back to the disk. Even if a �le has not been modi�ed, its inode structure will be

modi�ed, since the �le access time is stored within the inode structure.

7.2 File I/O Operations

The most important operations on open �les are read and write. Measurements of these opera-

tions are given in Table 7.2. Before blocks can be read or written, logical block numbers must be

mapped to physical block numbers using the data stored in an inode structure. Inodes organize

this block mapping information into a variable level tree. I measured I/O operations using both

111

Read, write, and lseek times in microseconds

Operation Cached Choices Encore UNIX

Read block direct NO 26803 � 420 33002 � 1275

Read block direct YES 2524 � 106 3784 � 128

Read block indirect NO 58841 � 4876 53457 � 769

Read block indirect YES 2726 � 294 4358 � 219

Write block direct YES 3752 � 207 3884 � 324

Write block indirect YES 3168 � 23 4324 � 306

Lseek | 111 � 5 194 � 6

Table 7.2: Data Access Operation Measurements

direct blocks and for single-indirect blocks.

1

All the I/O measurements reported in Table 7.2

are for reads or writes of 8192-byte aligned blocks. For cached read and write operations, Choi-

ces performs better, since it uses virtual memory hardware to map disk block number to bu�er

addresses. For uncached read and write operations, Choices and UNIX perform similarly, since

both systems must perform disk I/O and update mapping information.

The lseek operation, which repositions the stream �le location pointer, is essential for ran-

domly accessed �les. Table 7.2 also reports the overhead of the lseek operation. Choices per-

forms lseeks faster primarily because it provides a more e�cient system call mechanism[Rus91].

The interactions between various �le system operations can often lead to unanticipated

results. Therefore, I not only measured the times of individual operations, but I also measured

the time of performing a common series of operations: copying an entire �le. For this test

I chose to copy a one megabyte �le; I measured both the time to copy the data blocks from

disk-to-disk and from cache-to-cache. Table 7.3 shows the results of these tests. For disk-to-disk

copies, Choices performs slightly faster, largely owing to the e�ciency of the Choices caching

mechanism. For cache-to-cache copies, Choices takes less than half the time, again owing to

the e�ciency of the Choices caching mechanism. Choices also provides a single operation, copy,

to copy an entire �le. By avoiding the overhead of making many (256) system calls, Choices

provides a substantially faster �le copy mechanism.

1

Double and triple-indirect blocks are seldom used in BSD �le systems.

112

Copy one megabyte �les in seconds

Block size Cached Choices Encore UNIX

8192 NO 8.167 � 0.02 8.542 � 0.11

8192 YES .906 � 0.02 2.019 � 0.11

1048576 YES .562 � 0.03 |

Table 7.3: File Copy Measurements

7.3 Summary

A system constructed within an abstract framework using the object-oriented facilities of C++

could perform poorly. The data presented in this chapter, however, show that instead of yielding

an unacceptably slow �le system, the Choices �le system prototype performs comparably to

a commercial �le system that runs on the same hardware and uses the same on-disk data

structures.

113

Chapter 8

Conclusions

This chapter discusses the evolution of the Choices �le system framework, mentions the bene�ts

it derived from object-oriented techniques, summarizes the framework presented in this thesis,

and presents opportunities for future research.

8.1 Evolution of the Framework

As stated in Chapter 3, frameworks are a result of iterative design. The Choices �le system

framework has been extended many times since it was �rst developed. Early in its development,

several of these extensions required major reorganizations of the class hierarchy and modi�ca-

tions of abstract classes. Later, however, many new features were incorporated with little or

no changes to the framework.

During its evolution, there were three major versions of the framework. Each version is

brie
y described in this section, including its major features, abstractions, improvements, and

de�ciencies. For a detailed description of the third version, see Chapter 5; for detailed descrip-

tions of the previous two versions, see [MLRC88] and [MCRL89].

8.1.1 UNIX-Like File Systems

The �rst major version of the framework supported the design and construction of UNIX-like

�le systems. Members of the Choices project built object-oriented implementations of both the

BSD and System V UNIX �le systems. Since they shared much design, these two �le systems

114

contained many common abstractions. By encoding the common design elements as abstract

classes, I developed the �rst version of the framework.

The key abstraction was the MemoryObject class, from which most classes in the framework

inherited. Not only were the Disk, Partition, and BSDInode classes subclasses of MemoryOb-

ject, but so were the PersistentArrayStream, BSDContainer, and BSDDirectory classes. The

FileSystemInterface class was similar to the current design. There were no concepts similar to

PersistentObjects, PersistentArrays, or BlockAllocators.

This version of the framework was an improvement over the original, separate implementa-

tions of the two �le systems, since it bene�ted from all the object-oriented techniques presented

in Chapter 2 and summarized in this chapter. Nevertheless, it su�ered from an overuse of

inheritance, and it was not able to model the MS-DOS �le system.

8.1.2 Stream-Oriented File Systems

The second major version of the framework supported the design and construction of many

kinds of stream-oriented �le systems. It was motivated by an e�ort to model the MS-DOS �le

system and to restrict the use of inheritance to express the is-a relationship.

Besides the MemoryObject class, the key abstractions were the PersistentStoreContainer and

PersistentStoreDictionary classes. The BlockAllocator abstraction was also added. There were

no concepts similar to PersistentArrays, and the abstractions currently encoded in the Persis-

tentObject class were not well-de�ned.

The additional abstractions and improved usage of inheritance resulted in a greatly enhanced

version of the framework. Not only did the framework successfully model UNIX and MS-DOS

�le systems, but it also was able to model several non-conventional �le systems, described in

Section B.2, without requiring any modi�cations.

Despite the improvements in the second version, it was still incapable of modeling object-

oriented or record-oriented �le systems, since it lacked a well-de�ned concept of a PersistentOb-

ject.

115

8.1.3 An Object-Oriented File System Framework

The current version of the framework supports the design and construction of stream-oriented,

object-oriented, and record-oriented �le systems. It was motivated by an e�ort to model a

persistent object store and to be a dynamically extensible system.

The features of the MemoryObject class that related to persistent data were split into a

subclass ofMemoryObject, class PersistentStore. This enabled the Choices �le system framework

to be further re�ned without requiring changes to the Choices virtual memory framework, which

also relied on the MemoryObject class as a key abstraction. The addition of the PersistentStore

class to the framework allowed the requirement that the data managed by each PersistentStore

must also be encapsulated by a PersistentObject.

The PersistentObject uni�ed the data encapsulation attributes of the PersistentStoreCon-

tainer and PersistentStoreDictionary classes, which were introduced in the previous version of

the framework. Together with the newly added PersistentArray abstraction, they categorized

all the persistent objects found in stream-oriented �le systems. Thus, all Disks and Files were

encapsulated as objects which either contained other Files, mapped symbolic names to �le

identi�ers, or were arrays of persistent data.

But the PersistentObject class more than just uni�ed the concepts of stream-oriented �le

systems. It also enabled the support for a dynamically extensible set of Classes of PersistentOb-

jects, an example of which is presented in Appendix C. The new types of PersistentObjects that

could be added to the system included �le structuring classes that encoded the abstractions of

record-oriented �le systems.

The �le structuring and access classes presented in Section 5.3 demonstrate how the frame-

work easily was extended to incorporate an entire category of �le systems (record-oriented

�le systems). This extension used PersistentArrays as building blocks and resulted in only one

change to an existing abstract class: the numberOfRecords operation was added to the Persis-

tentStore class. This change was made to improve the performance of record-oriented �les, not

because it needed to provide basic functionality.

There are still many features of �le systems which could be incorporated into the Choices

�le system model. Some of these include more types of access control, �le and record locking,

116

support for transactions, and various types of garbage collection for general persistent object

stores.

8.2 Software Engineering Bene�ts

The Choices �le system exhibits the traditional bene�ts of object-oriented programming, and it

has served as an example that illustrates various attributes of object-oriented frameworks[OJ90,

WBJ90].

8.2.1 Reusability

The classes in the framework reuse much code, many interfaces, and many designs. Classes such

as PersistentStoreContainer, PersistentStoreDictionary, and UNIXInode provide most of the code

for their subclasses. All the major abstract classes described in Chapter 5 provide interfaces for

their subclasses. Even when code cannot be inherited by a subclass, the design can be reused

as described in Chapter 6.

8.2.2 Portability

The prototype implementation of the framework is highly portable: it runs as part of the

Choices kernel on various hardware platforms (for example, the Encore Multimax, the Apple

Macintosh, the Sun Microsystems SPARC, and the IBM PS/2), as an application on versions

of UNIX (SunOS, UMAX, and Cray UNICOS), and as a \public service object" in the ES-

KIT system[CKH

+

89]. Furthermore, it can be compiled using either the AT&T cfront C++

translator or the Free Software Foundation g++ compiler.

8.2.3 Maintainability

Maintainability is di�cult to discuss in the context of a project that has had one primary

developer. Nevertheless, I can identify two attributes of the framework that enhance the main-

tainability of systems built using it. The �rst attribute is that all data are encapsulated; thus,

changes in the code for one class seldom a�ect the code of other classes. One major exception

is that changes to a superclass can have drastic e�ects on its subclasses. The second attribute

is that almost all sharable code is implemented only once, in a superclass of the classes that

117

share it. This prevents code from being implemented more than once within the same system,

with implementations becoming inconsistent over time.

8.2.4 Customizability

The design of the framework, aided by the implementation of �rst-class classes[MCK91], yielded

highly customizable �le systems. When making a member of the Choices operating system

family, one can choose almost any combination of ten sets of storage management classes (AIX,

BSD, SVID, MSDOS, General, Remote, Ar, Tar, COFF, and mail) simply by editing ten tokens

in a Choices \Make�le." Because all persistent objects and application interface objects in the

framework depend solely on the abstract interfaces provided by the storage management classes,

changes in the set of supported concrete storage management subclasses just require relinking,

not recompilation. Furthermore, most sets of classes not supported at link-time can be added

at run-time (one notable exception is the COFF classes, which are reused by the dynamic

code-loading mechanism[MCK91]).

8.2.5 Extensibility

A measure of the extensibility of a framework is how many changes it requires to incorpo-

rate new features. The Choices �le system framework supported many extensions that did

not require any changes to its abstract classes. This section contains examples of these exten-

sions. Furthermore, Appendix C demonstrates how the application interface can be extended

to support non-conventional �le system applications.

Section B.2 presents the storage management classes of several custom �le systems. These

systems abstract �les formatted by various UNIX tools as PersistentStoreContainers. Not only

do these classes extend the framework without requiring any changes to its abstract classes,

but they also extend the functionality of standard UNIX shell commands without requiring any

changes to them.

Another extension was the implementation of a log-structured �le system by two sets of

students in an operating systems class.

1

Both sets of students demonstrated working prototypes

of the �le system proposed in [OD89]. The �le system framework allowed them to concentrate

1

The class, CS323, was taught at the University of Illinois in the Fall of 1989 by Professor Ralph Johnson.

118

on the novel aspects of the proposed system and to reuse much of the code that normally

would need to be rewritten in conventional systems. In contrast, two years earlier a team of 12

students made less progress implementing the much simpler and better documented System V

�le system.

Students in another operating systems class

2

used the framework for two projects. The �rst

involved adding VMS-style version numbers to System V directories, and the second involved

implementing a simple remote �le system. Again, neither project required any changes to the

framework.

8.3 Summary

This thesis demonstrates that one can create a simple, general, and extensible model of �le

systems by presenting the Choices object-oriented framework for �le systems. The framework

contains two fundamental abstractions. The PersistentStore class de�nes an interface for all

storage objects, from disks to disk partitions to �les to sections of �les. The data managed by

each PersistentStore is encapsulated by a PersistentObject. PersistentStores manage data access

within the �le system, while various kinds of PersistentObjects encapsulate the organization,

naming, and structure of persistent data.

The Choices �le system framework supports the design and construction of both conven-

tional and experimental �le systems. It not only allows the addition of new kinds of Persis-

tentStores and PersistentObjects, but it also simpli�es the implementation of these new classes

of objects. Furthermore, it provides interoperability of various kinds of �les and collections of

�les.

Within the framework, storage is organized by nested PersistentStoreContainers, which di-

vide a PersistentStore into a �xed or variable number of Files. If the number or the size of

Files within a container is variable, then the container uses a BlockAllocator to manage its

free blocks. Each class of BlockAllocator implements a form of storage management appropri-

ate for the types of inter-object references allowed by the container. Naming is provided by

PersistentStoreDictionaries, which map symbolic names to internal �le identi�ers.

2

CS323 taught in the Fall of 1990 by Professor Roy Campbell.

119

The framework incorporates three models for structuring the data contained within �les:

�les that contain unformatted arrays of bytes or words, �les that contain collections of records,

and �les that are data structures encapsulated by persistent objects. To support persistent

arrays, a PersistentStore must hold both the data and the �le's size. To support collections of

�xed size records, a PersistentStore must also hold the �le's record size. To support the storage of

persistent objects, a PersistentStore must also hold the �le's class . Furthermore, the �le classes

must belong to an extensible set, any persistent object must be allowed to store references

to other persistent objects within the same container, and some classes of persistent objects

must be capable of being implicitly retrieved and stored. As shown in Chapter 5, a �le system

framework that supports these features for persistent objects also supports record-oriented �le

system features such as variable length records and indexed sequential access methods.

The framework includes concrete classes that implement the storage management of stan-

dard �le systems, like UNIX and MS-DOS, and several custom �le systems, like those that

support the formats de�ned by ar, tar, mail, and COFF (see Appendix B). It also includes

classes that provide byte-stream, record-oriented, and object-oriented interfaces to persistent

data storage.

8.4 Future Work

There are many directions in which the research described in this thesis can be extended. The

framework could be extended to incorporate more kinds of access control for �les, to support

record locking and transactions, and to implement various types of garbage collection for general

persistent object stores. One could also use it as a test-bed for experimenting with network and

distributed �le systems, and to incorporate features of object-oriented database management

systems.

One could also use the framework to develop custom �le systems to support software devel-

opment or to meet the needs of con�guration management and software project management.

Finally, more work could be done in describing the framework itself. One of the aspects of

frameworks that is hardest to specify is the constraints placed on the components[JR91]. Formal

speci�cation of the framework, using a language like Object-Z, may help describe framework

attributes that cannot be expressed well in most programming languages.

120

Appendix A

Source Code

This appendix contains pseudo-code for selected operations of various abstract classes. Each

operation presented here is written in C++ and is intended to illustrate the design or algorithm

of the operation, but it is not intended to be the exact text of the Choices �le system code.

The reason for providing pseudo-code instead of the actual code is that the design should be

easier to understand when some details are eliminated. These details include some performance

enhancements and memory management code.

121

A.1 Selected PersistentStore Operations

// Return a PersistentObject encapsulating the data of this PersistentStore.

// Return zero if the Class of the data structure stored in this PersistentStore

// is not either aClass or any of its subclasses.

// Set status code to indicate success or reason for failure.

PersistentObject *

PersistentStore::asA(Class * aClass, ErrorCode & status)

{

PersistentObject * persistentObject = 0;

// Find the concrete subclass of aClass that describes

// the encapsulated data of this PersistentStore

Class * supportedClass = supports(aClass);

if(supportedClass != 0) {

// If the object has already been instantiated, skip instantiation

if(_persistentObject == 0) {

// Instantiate the object and store a reference to it for future calls.

_persistentObject = supportedClass->constructor(this);

// If this is an AutoLoadPersistentObject, load its data

if((_persistentObject != 0) && (_numberOfUnits > 0) &&

_persistentObject->isKindOf(AutoloadPersistentObjectClass)) {

char * buffer = new char[_numberOfUnits * unitSize()];

read(0, _numberOfUnits, buffer);

int baseSize = PersistentObjectClass->sizeOf();

int bytesToCopy = supportedClass->sizeOf() - baseSize;

char * persistentData = ((char *)_persistentObject) + baseSize;

ByteCopy(buffer, persistentData, bytesToCopy);

delete buffer;

}

}

persistentObject = _persistentObject;

status = Success;

}

if(persistentObject == 0) status = ProtocolMismatch;

return(persistentObject);

}

Figure A.1: Function De�nition: PersistentStore::asA

122

// This operation is inherited from the MemoryObject class.

// Copy the data of this MemoryObject to the destination MemoryObject

ErrorCode

MemoryObject::copy(MemoryObject * destination)

{

int log2BlockDifference = _log2BlockSize - destination->log2BlockSize();

int blocksPerRead = 1;

int blocksPerWrite = 1;

if (log2BlockDifference > 0) blocksPerWrite <<= log2BlockDifference;

else if(log2BlockDifference < 0) blocksPerRead <<= -log2BlockDifference;

char * buffer = new char[blocksPerRead * blockSize()];

int blocksRead = 0;

int blocksWritten = 0;

ErrorCode errorCode = Success;

while(blocksRead < _numberOfBlocks) {

int blocks = read(blocksRead, blocksPerRead, buffer);

blocksRead += blocks;

if((blocks < blocksPerRead) &&

(blocksRead < _numberOfBlocks)) {

errorCode = ReadError;

break;

}

blocks = destination->write(blocksWritten, blocksPerWrite, buffer);

blocksWritten += blocks;

if(blocks != blocksPerWrite) {

errorCode = WriteError;

break;

}

}

delete buffer;

destination->setNumberOfBlocks(_numberOfBlocks);

return(errorCode);

}

Figure A.2: Function De�nition: PersistentStore::copy

123

A.2 Selected Disk Operations

int

Disk::read(unsigned int start, int count, char * buf)

{

_mutex->P();

int blocksTransferred = doio(start, count, buf, DiskReadOperation) ;

_mutex->V();

return(blocksTransferred);

}

Figure A.3: Function De�nition: Disk::read

int

Disk::write(unsigned int start, int count, char * buf)

{

_mutex->P();

int blocksTransferred = doio(start, count, buf, DiskWriteOperation) ;

_mutex->V();

return(blocksTransferred);

}

Figure A.4: Function De�nition: Disk::write

124

A.3 Selected File Operations

int

File::read(unsigned int start, int count, char * buf)

{

if((start + count) > _numberOfBlocks) {

count = _numberOfBlocks - start;

}

return(basicRead(start, count, buf));

}

Figure A.5: Function De�nition: File::read

int

File::write(unsigned int start, int count, char * buf)

{

if((start + count) > _numberOfBlocks) {

count = _numberOfBlocks - start;

}

return(basicWrite(start, count, buf));

}

Figure A.6: Function De�nition: File::write

125

int

FileObject::basicRead(unsigned int start, int count, char * buffer)

{

int blocksRead = 0;

if((count > 0) && (buffer != 0)) {

if(_isBuffered) {

int bytesToCopy = count * blockSize();

int firstBlock = start + _offset;

int byteOffset = firstBlock * blockSize() % _source->blockSize();

int lastBlock = firstBlock + count - 1;

firstBlock /= blockFactor();

lastBlock /= blockFactor();

int blocksToRead = lastBlock - firstBlock + 1;

char * blockBuffer = new char[blocksToRead * _source->blockSize()];

blocksRead = _source->read(firstBlock, blocksToRead, blockBuffer);

if(blocksRead < blocksToRead) {

blocksRead = (blocksRead * blockFactor()) -

(byteOffset / blockSize());

}

else blocksRead *= blockFactor();

ByteCopy(blockBuffer + byteOffset, buffer, bytesToCopy);

delete blockBuffer;

}

else {

start *= blockFactor();

start += _offset;

count *= blockFactor();

blocksRead = _source->read(start, count, buffer) / blockFactor();

}

}

return(blocksRead);

}

Figure A.7: Function De�nition: File::basicRead

126

int

FileObject::basicWrite(unsigned int start, int count, char * buffer)

{

int blocksWritten = 0;

if((count > 0) && (buffer != 0)) {

if(_isBuffered) {

int bytesToCopy = count * blockSize();

int firstBlock = start + _offset;

int byteOffset = firstBlock * blockSize() % _source->blockSize();

int lastBlock = firstBlock + count - 1;

firstBlock /= blockFactor();

lastBlock /= blockFactor();

int blocksToWrite = lastBlock - firstBlock + 1;

char * blockBuffer = new char[blocksToWrite * _source->blockSize()];

_source->read(firstBlock, blocksToWrite, blockBuffer);

ByteCopy(buffer, blockBuffer + byteOffset, bytesToCopy);

blocksWritten = _source->write(firstBlock, blocksToWrite, blockBuffer);

if(blocksWritten < blocksToWrite) {

blocksWritten = (blocksWritten * blockFactor()) -

(byteOffset / blockSize());

}

else blocksWritten *= blockFactor();

delete blockBuffer;

}

else {

start *= blockFactor();

start += _offset;

count *= blockFactor();

blocksWritten = _source->write(start, count, buffer) / blockFactor();

}

}

return(blocksWritten);

}

Figure A.8: Function De�nition: File::basicWrite

127

A.4 Selected PersistentStoreContainer Operations

File *

PersitentStoreContainer::open(int idNumber, ErrorCode & status)

{

File * file = 0;

if((0 > idNumber) || (idNumber >= _numberOfFiles)) {

status = IdNumberOutOfRange;

}

else {

_mutex->P();

file = _files[idNumber];

if(file == 0) {

file = basicOpen(idNumber, status);

if(file != 0) {

_files[idNumber] = file;

if (_openFiles++ == 0) reference();

}

}

else status = Success;

_mutex->V();

}

return(file);

}

Figure A.9: Function De�nition: PersistentStoreContainer::open

128

File *

PersitentStoreContainer::create(int hint, Class * aClass, ErrorCode& status)

{

_mutex->P();

File * file = basicCreate(hint, aClass, status);

if(file != 0) {

int idNumber = file->idNumber();

_files[idNumber] = file;

if (_openFiles++ == 0) reference();

_modified = 1;

}

_mutex->V();

return(file);

}

Figure A.10: Function De�nition: PersistentStoreContainer::create

PersitentStoreDictionary *

PersitentStoreContainer::rootDictionary()

{

ErrorCode errorCode;

File * file = basicOpen(basicRootId(), errorCode);

if(file == 0) return(0);

else return(file->asA(PersitentStoreDictionaryClass, errorCode));

}

Figure A.11: Function De�nition: PersistentStoreContainer::rootDictionary

129

void

PersistentStoreContainer::close(File * file)

{

int idNumber = file->idNumber();

Assert((0 <= idNumber) && (idNumber < _numberOfFiles));

_mutex->P();

basicClose(file);

_files[idNumber] = 0;

--_openFiles;

int noOpenFiles = (_openFiles == 0);

_mutex->V();

if(noOpenFiles) unreference();

}

Figure A.12: Function De�nition: PersistentStoreContainer::close

void

PersitentStoreContainer::synchronize()

{

_mutex->P();

basicSynchronize();

_mutex->V();

}

Figure A.13: Function De�nition: PersistentStoreContainer::synchronize

130

A.5 Selected BlockAllocator Operations

int

BlockAllocator::allocate(int & blocks, int hint, int numberOfBlocks)

{

_mutex->P();

int blocksAllocated = basicAllocate(blocks, hint, numberOfBlocks);

_mutex->V();

return(blocksAllocated);

}

Figure A.14: Function De�nition: BlockAllocator::allocate

void

BlockAllocator::free(int & blocks, int blockNumber, int numberOfBlocks)

{

_mutex->P();

basicFree(blocks, blockNumber, numberOfBlocks);

_mutex->V();

}

Figure A.15: Function De�nition: BlockAllocator::free

131

A.6 Selected PersistentStoreDictionary Operations

ErrorCode

PersitentStoreDictionary::associations(char * buffer, int size, int & count)

{

ErrorCode status = 0;

_mutex->P();

if(!_source->access(AccessRead)) status = FileAccessViolation;

else status = basicAssociations(buffer, size, count);

_mutex->V();

return(status);

}

Figure A.16: Function De�nition: PersistentStoreDictionary::associations

ErrorCode

PersitentStoreDictionary::keys(char * buffer, int bufferSize, int & count)

{

ErrorCode status = 0;

_mutex->P();

if(!_source->access(AccessRead)) status = FileAccessViolation;

else status = basicKeys(buffer, bufferSize, count);

_mutex->V();

return(status);

}

Figure A.17: Function De�nition: PersistentStoreDictionary::keys

132

PersistentStore *

PersitentStoreDictionary::create(char * key, Class * aClass,

ErrorCode & status)

{

PersistentStore * store = 0;

int keyLength = strlen(key);

_mutex->P();

if (!_source->access(AccessSearch)) status = FileAccessViolation;

else if(keyLength <= 0) status = KeyTooSmall;

else if(keyLength > _maxKeyLength) status = KeyTooBig;

else if(findKey(key, associationSize(keyLength))) {

store = _container->open(_idNumberOfKey, status);

if(store != 0) {

Class * supportedClass = store->supports(aClass);

if(supportedClass != 0) status = KeyExists;

else {

store = 0;

status = ProtocolMismatch;

}

}

}

else if(!_source->access(AccessWrite)) status = FileAccessViolation;

else {

store = _container->create(hint(), aClass, status);

if(store != 0) {

Class * supportedClass = store->supports(aClass);

if(supportedClass != 0) {

status = insertAssociation(key, keyLength, store->idNumber());

if(status == 0) {

if(supportedClass->isASubclassOf(PersistentStoreDictionaryClass)) {

PersistentStoreDictionary * psd = store->asA(supportedClass);

status = psd->add("..", _source);

}

}

else store = 0;

}

else {

store = 0;

status = ProtocolMismatch;

}

}

}

_mutex->V();

return(store);

}

Figure A.18: Function De�nition: PersistentStoreDictionary::create

133

ErrorCode

PersitentStoreDictionary::add(char * key, PersistentStore * store)

{

ErrorCode status;

int keyLength = strlen(key);

int associationLength = associationSize(keyLength);

_mutex->P();

if (keyLength <= 0) status = KeyTooSmall;

else if(keyLength > _maxKeyLength) status = KeyTooBig;

else if(!_source->access(AccessWrite)) status = FileAccessViolation;

else if(findKey(key, associationLength)) status = KeyExists;

else status = insertAssociation(key, keyLength, store->idNumber());

if(status == 0) store->links(1);

_mutex->V();

return(status);

}

Figure A.19: Function De�nition: PersistentStoreDictionary::add

PersistentStore *

PersitentStoreDictionary::open(char * key, ErrorCode & status)

{

_mutex->P();

PersistentStore * store = 0;

if (!_source->access(AccessSearch)) status = FileAccessViolation;

else if(!findKey(key, 0)) status = KeyNotFound;

else store = _container->open(_idNumberOfKey, status);

_mutex->V();

return(store);

}

Figure A.20: Function De�nition: PersistentStoreDictionary::open

134

ErrorCode

PersitentStoreDictionary::remove(char * key)

{

int status = 0;

_mutex->P();

if (!_source->access(AccessWrite)) status = FileAccessViolation;

else if(!_source->access(AccessSearch)) status = FileAccessViolation;

else if(!findKey(key, 0)) status = KeyNotFound;

else {

PersistentStore * store = _container->open(_idNumberOfKey, status);

if(store != 0) {

PersistentStoreDictionary * psd =

store->asA(PersistentStoreDictionaryClass, status);

if(psd != 0) {

if(psd == this) status = DirectoryBusy;

else status = psd->empty();

}

else status = Success;

if(status == Success) {

status = clearAssociation();

if(status == Success) {

store->links(-1);

if(psd != 0) {

store->links(-1);

_source->links(-1);

}

}

}

}

}

_mutex->V();

return(status);

}

Figure A.21: Function De�nition: PersistentStoreDictionary::remove

135

A.7 Selected FileSystemInterface Operations

PersistentStore *

FileSystemInterface::pathOpen(char * path, ErrorCode & status,

PersistentStoreDictionary * psd,

int follow, int links)

{

PersistentStore * aStore = 0;

status = Success;

char * key;

PersistentStoreDictionary * aDictionary = findDictionary(path, key,

psd, links);

if(aDictionary == 0) status = InvalidPath;

else {

if((strcmp(key, "..") == 0) && (aDictionary == _root)) {

aStore = aDictionary->asA(PersistentStoreClass, status);

}

else if(*key == '\0') aStore = aDictionary->open(".", status);

else aStore = aDictionary->open(key, status);

_mountTable->substitute(aStore);

if(follow) substituteLink(aDictionary, aStore, status, links);

}

return(aStore);

}

Figure A.22: Function De�nition: FileSystemInterface::pathOpen

PersistentStoreDictionaryRef

FileSystemInterface::findDictionary(char * path, char * & key,

PersistentStoreDictionary * aDictionary,

int links)

{

PersistentStoreDictionaryRef startDictionary = 0;

if(path[0] == '/') startDictionary = _root;

else startDictionary = aDictionary;

return(basicFindDictionary(path, key, startDictionary, links));

}

Figure A.23: Function De�nition: FileSystemInterface::�ndDictionary

136

PersistentStoreDictionaryRef

FileSystemInterface::basicFindDictionary(char * path, char * & key,

PersistentStoreDictionary * start,

int links)

{

PersistentStoreDictionaryRef dictionary = start;

for(;;) {

while(*path == '/') path++;

_mountTable->substituteUp(dictionary, path);

key = path;

char tmpKey[512];

for(int i = 0; ((*path != '/') && (*path != '\0'));) {

tmpKey[i++] = *path++;

}

if(*path == '\0') break;

tmpKey[i] = '\0';

if((strcmp(tmpKey, "..") != 0) || (dictionary != _root)) {

int status = 0;

PersistentStoreRef store = dictionary->open(tmpKey, status);

if(store == 0) {

dictionary = 0;

break;

}

_mountTable->substitute(store);

substituteLink(dictionary, store, status, links);

PersistentPersistentStore * store = store;

if(store == 0) break;

dictionary = store->asA(PersistentStoreDictionaryClass, status);

if(dictionary == 0) {

PersistentStoreContainer * container = store->asA(

PersistentStoreContainerClass, status);

if(container == 0) break;

else dictionary = container->rootDictionary();

}

}

}

_mountTable->substituteUp(dictionary, key);

return(dictionary);

}

Figure A.24: Function De�nition: FileSystemInteface::basicFindDictionary

137

Appendix B

Storage Management Examples

This appendix describes several �le systems that have been built using the abstract classes

presented in Chapter 5 and the subclassing techniques presented in Chapter 6. For each �le

system, I will give the requirements of the system followed by the concrete classes that satisfy

them. These requirements usually take the form of data structures de�ned by another operating

system, like UNIX or MS-DOS, or system programs, like mail or tar.

B.1 Standard Operating System Formats

Since the framework was �rst developed by implementing the �le systems of three standard

operating systems (System V UNIX, BSD UNIX, and MS-DOS), it is well-suited to building

such systems. Besides describing these three systems, this section describes a fourth system

(AIX).

B.1.1 UNIX Storage Management Systems

There are many versions of the UNIX operating system; there are also several versions of the

UNIX �le system. Implementations of three of the most common versions of the UNIX �le

system have been built within the Choices �le system framework. Members of the Choices

project chose to implement the three because each version was used by at least one of our

target hosts. These versions also illustrate various types of code reuse within the framework.

138

I will �rst introduce the simplest system, System V, then the most complex, BSD, followed

by the one that has similarities with both, AIX, and �nally I will discuss abstract classes shared

by all three.

B.1.1.1 The System V UNIX File System

The System V UNIX �le system[Bac86, Tho78] divides each disk or partition into three sections:

a header, called a superblock ; a �xed-size array of �le descriptors, called inodes ; and the rest of

the data blocks, which can be unallocated, hold �le data, or hold block mapping information.

The superblock describes the general state of the disk or partition and includes the following

�elds: a magic number , a clustering factor, the total number of inodes, the number of free

inodes, a cache of free inode numbers (inumbers), the total number of blocks, the number of

free blocks, and a partial list of free block numbers. The rest of the free blocks are organized

as a linked list.

Each element in the inode array holds the following information about the �le that it de-

scribes: access permissions, ownership information, the type of the �le (either regular or direc-

tory), the number of bytes in the �le, access and modi�cation times, block mapping information,

and the number of links to the �le.

The format of the block mapping information is designed to be space-e�cient for both small

and large �les, but accessing blocks in large �les is slower than in small �les. Each inode stores

the numbers of the �rst ten blocks in the �le; these blocks are called direct blocks . If the �le

contains more than ten blocks, the inode can store the addresses of single, double, and triple

indirect blocks . The single indirect block contains an array of data block numbers, the double

indirect block contains an array of single indirect block numbers, and the triple indirect block

contains an array of double indirect block numbers. The inode structure stores each block

number as a 3-byte integer, which must be converted to a standard C++ integer before it can

be used by the rest of the �le system.

The System V �le system names �les using special �les called directories , which contain

lists of <name, inumber> pairs. Each name is a string of fourteen characters padded with null

characters. Each pair \links" a symbolic name to a �le. If an inode has a zero link count for

its �le, the �le will be deleted and the inode cleared.

139

Besides naming a group of �les and other directories, each directory assigns the name \." to

itself and the name \.." to its parent directory. This organizes all directories in a partition as

a tree. The root of the tree is called the root directory , and its corresponding �le descriptor is

always the second inode. While the directory names are organized as a tree, regular �le names

are a directed acyclic graph, since many directories can contain links to the same regular �le.

The SVIDContainer class encapsulates the inode array data structures and the �elds of

the superblock that are unrelated to block allocation. It de�nes two operations readInode and

writeInode that retrieve, store, and cache inodes. The basicOpen operation checks to ensure that

the inode corresponding to the given inumber has a non-zero link count and then instantiates

a SVIDInode with the appropriate arguments and returns a reference to it. The basicCreate

operation checks to see if there are any free inumbers in the superblock cache; if there are none,

it searches through the inode array and replenishes the cache. Once it has a free inumber,

it initializes the corresponding inode and then instantiates a SVIDInode with the appropriate

arguments and returns a reference to it. The basicClose operation checks the inode's link count;

if it is zero, it clears the inode data structure so that it is free for reallocation. It also deletes

the instance of SVIDInode. The basicSynchronize operation writes any modi�ed superblock or

inode information to the underlying PersistentStore. The basicRootId operation returns two, the

inumber of the root directory.

The SVIDContainer constructor creates a SVIDBlockAllocator, which encapsulates the su-

perblock's cache of free data block numbers and the linked list of free data blocks. The basic-

Allocate operation returns a free block number from the superblock cache and replenishes the

cache when it is empty. The basicFree operation stores a previously allocated block's number

in the superblock cache and writes out part of the cache when it is full.

The SVIDInode class encapsulates the System V inode data structure. Many of its oper-

ations, including numberOfRecords, setNumberOfRecords, and info, retrieve or store inode ele-

ments. It also de�nes the mapBlock operation, which takes two arguments. The �rst argument

is the block number within the �le, which it maps to a block number of the �le's underlying

PersistentStore. If the block number is not currently mapped, mapBlock can take one of two

actions: it can either request a new block from the SVIDBlockAllocator or it can return a zero,

indicating that the block is not mapped. The second argument indicates which action should be

taken if the block number is not currently mapped. When the write operation calls mapBlock,

140

it requests that a mapping be added if needed. This allows �les to expand by writing data

to additional blocks. When the read operation calls mapBlock, it requests that a mapping not

be added because �les may have unmapped blocks in UNIX �le systems. When a program

attempts to read such blocks, the read operation zeros the given bu�er. A SVIDInode can store

the data for either a PersistentCharArray or a SVIDDirectory.

The SVIDDirectory class encapsulates an array of �xed-length directory entries. Each entry

includes a fourteen character �le name and a two byte inumber. As entries are added to a

SVIDDirectory, the array grows, but when entries are removed, the array does not shrink. The

clearAssociation operation marks an entry as unused by setting the inumber �eld to zero. The

�ndKey operation searches sequentially through the array of entries. If it is also looking for

space to add a new key, it will return the location of the �rst entry that has a zero inumber.

The associationSize operation returns the size of an entry, which is always 16, regardless of the

size of the key to be stored.

B.1.1.2 The BSD UNIX File System

The BSD UNIX �le system[MJLF84] retains the higher level organization of the System V �le

system, but changes all data structures and adds several features. To increase performance,

each partition is divided into contiguous regions called cylinder groups, and some superblock

information is spread between the groups. To increase reliability, the superblock is replicated

in each cylinder group. The BSD �le system uses bitmaps to store the state of both inode and

block allocation.

BSD inodes cluster data blocks for �les into groups of 8 contiguous blocks. This greatly

increases the I/O performance, but uses too much disk space for the many small �les that

commonly exist in UNIX �le systems. To improve disk space utilization, the last cluster of

blocks in a small �le can be a fragment that contains between 1 and 7 blocks. These fragments

give the system both good performance and space utilization, but they do complicate the code

that manages inodes. Besides block clusters and fragments, BSD inode structures di�er from

System V inodes in size (128 versus 64 bytes) and the way that they store block numbers (4

byte integers versus 3 byte integers).

BSD organizes directories as an array of blocks that each can contain several variable-length

entries. Each entry contains four �elds: the size of the entry, the size of the name, a �le name,

141

and an inumber. The size of an entry is always a multiple of four bytes. These entries can

belong to one of several sequential lists, one list per block, or to a single hash table.

The BSD �le system extends the naming model of the UNIX �le system by adding symbolic

links, which are �les that contain a pathname. When a program attempts to open a symbolic

link, the �le system returns the �le that is named by the path.

A BSDContainer performs the same functions as a SVIDContainer except that it handles

header information that is spread between the superblock and several cylinder groups instead

of being in a single superblock, encapsulates inode allocation bitmaps instead of a superblock

cache of free inode numbers, and instantiates BSDInodes instead of SVIDInodes.

A BSDBlockAllocator performs the same functions as a SVIDBlockAllocator except that it

handles header information that is spread between the superblock and several cylinder groups

instead of being in a single superblock, encapsulates block allocation bitmaps instead of a

superblock cache of free block numbers, and handles requests for contiguous clusters of blocks

instead of just single blocks.

A BSDInode performs the same functions as a SVIDInode except that it encapsulates a

di�erent inode format, handles clusters and cluster fragments, and supports either a Persistent-

CharArray, a BSDDirectory, a HashedBSDDirectory, or a SymbolicLink. A BSDInode can store

the data for a symbolic link within the inode itself, if the size of the data is less than 60 bytes.

A BSDDirectory performs the same functions as a SVIDDirectory except that it encapsulates

an array of blocks that contain sequential lists of variable-length entries. A HashedBSDDirectory

also encapsulates arrays of blocks that contain variable-length entries, but all the entries are

linked together in a single open hash table. The �rst block serves as the table of bucket headers

for the bucket lists.

B.1.1.3 The AIX File System

The AIX �le system resembles a �le system with a System V free list, System V inodes, and

BSD directories. Both the superblock and inode structures di�er in layout and size between

the AIX and System V �le systems, yet many of the �elds that they contain are identical. The

two major di�erences between the AIX and System V inode structures are:

� an AIX inode contains a 384 byte bu�er that it uses to store the data for a small �le, and

142

� an AIX inode stores block numbers as four byte integers instead of the three byte integers.

AIX directories use the same variable-length entries as BSD directories, but the entries are

always rounded to the nearest multiple of 16 bytes. Implementing an AIX �le system within

a framework that already contains components for System V and BSD �le systems is greatly

simpli�ed through three types of reuse:

� using an existing class unmodi�ed (for example, SVIDBlockAllocator),

� subclassing to encapsulate small di�erences in data structures (for example, AIXDirectory),

and

� designing a new class based on the design of an existing class (for example, AIXContainer).

The AIXContainer class di�ers from the SVIDContainer class primarily in two ways: �rst, it

encapsulates a slightly di�erent superblock structure, and second, its open and create opera-

tions instantiate AIXInodes instead of SVIDInodes. Because of these di�erences are minor, the

SVIDContainer class served as a guide for the implementation of the AIXContainer class.

The AIX free list uses the same data structure as the System V free list; therefore, an

AIXContainer can use a SVIDBlockAllocator to manage block allocation and deallocation.

AIXInodes encapsulate AIX inode structures in the same way as SVIDInodes encapsulate

System V inode structures, but they also have to add code to the read and write operations to

handle �les small enough to �t in the inode bu�er.

The AIXDirectory is a subclass of BSDDirectory and inherits all operations except associa-

tionSize, which rounds the size of each directory entry up to the nearest multiple of 16 instead

of 4.

B.1.1.4 Common UNIX Classes

Each of the three UNIX �le systems described in this section contains four types of classes: Per-

sistentStoreContainers, BlockAllocators, Files, and PersistentStoreDictionaries. Two �le systems

share a single class of BlockAllocator(System V and AIX), and two �le systems share much of

a class of PersistentStoreDictionary(BSD and AIX). But all three �le systems have their own

classes of PersistentStoreContainers and Files, even though all data structures contain similar in-

formation and all classes perform many similar operations. Therefore, I de�ned two classes that

143

capture the common structure and behavior shared between all three systems: UNIXContainer

and UNIXInode.

The UNIXContainer class implements the readInode and writeInode operations, which retrieve,

store, and cache blocks of inode structures, for all three of its subclasses. To enable these

operations to work even when all subclasses de�ne di�erent sizes for inode structures and

possibly di�erent block sizes, the subclasses must implement two simple operations: mapInumber

and �rstInumber. The mapInumber operation takes an inumber as an argument and returns the

block number where the corresponding inode is stored. The �rstInumber operation takes an

inumber as an argument and returns the inumber of the �rst inode stored in the same block as

the corresponding inode.

The UNIXInode class implements the read, write, copy and mapBlock operations. While

all three subclasses inherit the implementations of read and write, two subclasses, BSDInode

and AIXInode, overload both operations. These overloaded operations �rst check to see if the

data are stored within the inode itself. If the data are stored within the inode, they handle

the request; if not, they invoke the corresponding UNIXInode implementation of the operation.

Since all three versions of the UNIX �le system allow �les to contain empty, unallocated blocks,

the UNIXInode class implements the copy operation so that it does not copy empty blocks.

To support the mapBlock operation, all subclasses implement operations to store and retrieve

direct and indirect block pointers.

B.1.2 The MS-DOS Storage Management System

The MS-DOS �le system[Nor85] resembles the UNIX �le system in several ways:

� each �le can store the data for either a regular �le or a directory,

� the only type of PersistentObject supported by regular �les is PersistentCharArray, and

� the directories within each PersistentStoreContainer are organized as a tree.

Despite these similarities, the internals of the MS-DOS �le system di�er fundamentally from

UNIX �le systems. MS-DOS divides a low-level PersistentStore into four �xed-sized sections: a

header, called a boot sector, a File Allocation Table (FAT), a root directory and data blocks

containing �les and subdirectories.

144

The boot sector describes the general state of the underlying PersistentStore and includes

the following �elds: the size and format of the FAT, the size of the root directory, and the

number of data blocks. MS-DOS stores most �le control information within directory entries

instead of inodes. This restricts �les to being in exactly one directory.

Directories are arrays of entries with several �elds that include: an 11 character �le name,

the type of the �le (either regular or directory), the number of bytes in the �le, the time of the

last modi�cation, and the number of the �rst data block in the �le. The root directory has a

�xed number of entries; there is no limit on the number of entries in subdirectories. As with a

UNIX directory, an MS-DOS directory assigns the name \." to itself and the name \.." to its

parent directory. Deleted entries are marked by zeroing the �rst character of the �le name.

MS-DOS directory entries have a �xed size; therefore, variable-sized �le block mapping

information cannot be kept with the other control information. Instead, all block mapping (and

block allocation) information for an MS-DOS �le store is kept within a single data structure,

the FAT. The FAT is an array that has an element, either a 12 or 16 bit integer, for each data

block. The FAT stores a zero for each unallocated block, the next block number for each block

that belongs to a �le, and a negative one for the last block in a �le. Thus it stores a chain of

block numbers for each �le, and �les cannot have empty, unallocated blocks. The organization

of the FAT also yields poor random access performance for large �les.

AnMSDOSContainer encapsulates the boot sector and the �le description information stored

in directory entries. The MSDOSContainer class uses a design similar to the UNIXContainer

class. The basicOpen operation instantiates and returns either a File initialized to support an

MSDOSDirectory, if the id-number is 1, or an MSDOSStore, if the id-number is greater than 1.

The basicCreate operation �nds and initializes a free directory entry and then instantiates and

returns an MSDOSStore. The basicClose operation checks to see if the �le has been deleted,

and if it has, it clears the entry.

An MSDOSFAT encapsulates the File Allocation Table. Besides implementing the basic-

Allocate and basicFree operations, the MSDOSFAT class provides a mapBlock operation, which

retrieves the nth element from a chain of block numbers, given n and the start of the chain.

The MSDOSStore class uses the MSDOSFAT's mapBlock operation to implement its mapBlock

operation.

145

Because the underlying data for the root directory is stored in a contiguous, �xed-size

window onto the underlying PersistentStore, its data can be managed by an instance of the File

class. The MSDOSStore class abstracts all MS-DOS �les other than the root directory; it uses

a design similar to the UNIXInode class.

Even though the root directory and subdirectories use di�erent underlying PersistentStore

classes, they are both abstracted by the same MSDOSDirectory class. An MSDOSDirectory

encapsulates an array of �xed-length directory entries. As with UNIX directories, as entries

are added to an MSDOSDirectory, the array grows, but when entries are removed, the array

does not shrink. The clearAssociation operation marks an entry as unused by setting the �rst

character of the �le name to zero. The �ndKey operation searches sequentially through the

array of entries. If it is also looking for space to add a new key, it will return the location of

the �rst entry that has a �le name with a null �rst character . The associationSize operation

returns the size of an entry, which is always 32, regardless of the size of the key to be stored.

B.2 Standard Tool Formats

After successfully implementing the �le systems of several standard operating systems, I at-

tempted to build other kinds of �le systems. The �le formats de�ned by several standard UNIX

tools, including ar, tar, ld, andmail, divide the data within a �le into several components, or-

ganize these components so that they can be conveniently accessed, and provide names for them.

Therefore, instead of accessing a �le formatted by one of these tools as a PersistentCharArray,

applications could access it as a PersistentStoreContainer, if the operating system included a �le

system customized for the particular �le format. The Choices �le system framework supports

the design and implementation of such �le systems.

B.2.1 The Ar File System

The UNIX ar (archive) command archives a collection of �les by combining them into a single

�le. The format of the archive �le includes an archive header, a header for each component �le,

the contents of each �le, and a pad character at the end of the contents of each �le that has an

odd number of bytes. The archive header only contains a magic string . Each 60 character �le

header includes: a �fteen character �le name, the �le modi�cation time, ownership information,

146

access permissions, the size of the �le, and a magic number. For portability between systems

with di�erent byte orders, all information in the header is stored as character strings.

An ArContainer encapsulates the archive header and �le headers. The constructor for an

ArContainer reads each �le header and assigns id-numbers sequentially to each �le stored within

the archive, starting with the number 2. The root dictionary is assigned id-number 1. The

basicOpen operation instantiates and returns either a File initialized to support an ArDictionary,

if the id-number is 1, or an ArStore, if the id-number is greater than 1.

The ArStore class abstracts component �les stored within an archive. Because each com-

ponent �le is stored in a contiguous, �xed-size window onto the underlying PersistentStore, the

ArStore class inherits the read and write operations from the File class. The ArStore class imple-

ments operations that retrieve information from a �le header, such as info and numberOfRecords.

ArStores only support PersistentCharArrays. Since the contents of component �les are not aligned

on block boundaries, ArStores are examples of Files that bu�er reads and writes.

An ArDictionary encapsulates the �le names stored in the �le headers in its underlying File

and maps them to the id-numbers assigned by its corresponding ArContainer. Since the archive

�le does not allow nested dictionaries, there is only one ArDictionary per ArContainer. Figure B.1

shows an example that uses the Ar File System classes within the framework.

B.2.2 The Tar File System

The UNIX tar (tape archive) command also archives a collection of �les by combining them

into a single �le. The format of the tape archive �le includes a header for each component

�le and the contents of each �le. Both the header and the contents of each �le are aligned on

512-byte block boundaries. Each 512-character �le header includes: a 100-character �le name,

the �le modi�cation time, ownership information, access permissions, the size of the �le, the

type of the �le, a checksum, and a 100-character bu�er that stores the �le's data, if it is a

symbolic link. For portability between systems with di�erent byte orders, all information in

the header is stored as character strings.

A TarContainer encapsulates the �le headers. The constructor for an TarContainer reads each

�le header and assigns id-numbers sequentially to each �le stored within the archive, starting

with the number 2. The root dictionary is assigned id-number 1. The basicOpen operation

147

Partition

Partition

Partition

DiskContainer

Disk

I/O Subsystem

Application Programs

Persistent
Array
Stream

Persistent
Array
Stream

Persistent
Char
Array

ArDictionaryRoot
Dictionary

General
File

General
File General

BlockAllocator

GeneralContainer

General
File

General
File

File
System
Interface

Object
Interface
Layer

Persistent
Object
Layer

Storage
Management
Layers

ArContainer ArStore
ArStore

Persistent
Char
Array

Figure B.1: Using Ar File System Classes within the Framework

148

instantiates and returns either a File initialized to support an TarDictionary, if the id-number is

1, or an TarStore, if the id-number is greater than 1.

The TarStore class abstracts component �les stored within a tape archive. Because each

component �le is stored in a contiguous, �xed-size window onto the underlying PersistentStore,

the TarStore class inherits the read and write operations from the File class. The TarStore

class implements operations that retrieve information from a �le header, such as info and num-

berOfRecords. TarStores only support PersistentCharArrays. Since the contents of component �les

are aligned on block boundaries, TarStores may not need to bu�er reads and writes; therefore,

retrieving data from a TarStore can be more e�cient than retrieving data from an ArStore.

A TarDictionary encapsulates the �le names stored in the �le headers in its underlying File

and maps them to the id-numbers assigned by its corresponding TarContainer. In the current

implementation, there is only one TarDictionary per TarContainer.

B.2.3 The Mail File System

The UNIX mail command allows users to write, send, receive, read, store, retrieve, and delete

electronic mail messages. Themail command formats a mailbox �le into a sequence of variable-

length messages. A line that begins with the string \From ", followed by the sender's name

and the message's date, marks the beginning of each message. Each message comprises the

beginning line, a series of �elds, and a message body. A line that begins with a series of non-

blank characters, followed by a colon, marks the beginning of each �eld. Most �elds contain

a single line, but �elds can contain several lines, all but the �rst line must begin with a blank

character. The message body begins with the �rst blank line in the message and ends with the

end of the message.

A MailContainer encapsulates the structure of a mailbox �le. The constructor for a Mail-

Container reads the entire mailbox and assigns id-numbers to each message, starting with the

number 2. The root dictionary is assigned id-number 1. The basicOpen operation instantiates

and returns either a MailRootStore, if the id-number is 1, or a File initialized to support a

MailMessageContainer, if the id-number greater than 1.

The MailRootStore class de�nes objects that support MailDictionaries. A MailDictionary

also encapsulates the structure of a mailbox �le. It maps message numbers given as character

149

I/O Subsystem

Application Programs

Persistent
Array
Stream

Persistent
Array
Stream

Persistent
Char
Array

MailMessageDictionaryRoot
Dictionary

File
System
Interface

Object
Interface
Layer

Persistent
Object
Layer

Storage
Management
Layers

Partition

Partition

Partition

DiskContainer

Disk

General
File

General
File General

BlockAllocator

GeneralContainer

General
File

General
File

Persistent
Char
Array

MailContainer
File

MailRootStore

MailMessageContainer
File
File

Figure B.2: Using Mail File System Classes within the Framework

150

strings into the id-numbers assigned by its correspondingMailContainer. (The mapping function

converts the character string to an integer and then adds 1 to obtain the id-number.)

A MailMessageContainer encapsulates the structure of an individual message. The construc-

tor for a MailMessageContainer reads the message and assigns id-numbers to each �eld, starting

with the number 2. The root dictionary is assigned id-number 1, and the message body is

assigned an id-number that is 2 plus the number of �elds. The basicOpen operation instantiates

and returns either a File initialized to support a MailMessageDictionary, if the id-number is 1,

or a File initialized to support a PersistentCharArray, if the id-number greater than 1.

A MailMessageDictionary also encapsulates the structure of an individual message. It maps

�eld names into the id-numbers assigned by its corresponding MailMessageContainer. Figure B.2

shows an example that uses the Mail File System classes within the framework.

B.2.4 The COFF File System

Several UNIX tools, including the ld (link editor for object �les) command, use the Common

Object File Format[Gir88] for binary object or executable �les. The COFF format divides a �le

into the following sections: a �le header, a system header, at least one data section, a symbol

table, and a string table for symbols with names longer than eight characters. Each data section

includes a header, the data, relocation information, and line numbers for debugging support.

The system header, symbol table, and string table are optional. Line numbers within data

sections are also optional.

A COFFContainer encapsulates the data structures of a COFF �le. Its constructor reads

the various headers in the �le and assigns id-numbers to all components in the �le, starting

with the number 2. The root dictionary is assigned id-number 1. The basicOpen operation

instantiates and returns either a File initialized to support a COFFDictionary, if the id-number

is 1, or a File initialized to support a PersistentCharArray, if the id-number greater than 1.

A COFFDictionary encapsulates the sections names in the COFF �le, and also provides names

for all other components in the COFF �le. Since the COFF format does not have a hierarchical

naming structure, there is only one COFFDictionary per COFFContainer. Figure B.3 shows an

example that uses the COFF File System classes within the framework.

151

Partition

Partition

Partition

DiskContainer

Disk

I/O Subsystem

Application Programs

Persistent
Array
Stream

Persistent
Array
Stream

Persistent
Char
Array

COFFDictionaryRoot
Dictionary

General
File

General
File General

BlockAllocator

GeneralContainer

General
File

General
File

File
System
Interface

Object
Interface
Layer

Persistent
Object
Layer

Storage
Management
Layers

COFFContainer File
File

Persistent
Char
Array

Figure B.3: Using COFF File System Classes within the Framework

152

B.3 A Remote File System

Besides supporting the construction of �le systems that encapsulate the data structures of

common systems or tools, the framework supports the construction of �le systems that allow

applications access to �les stored on a remote computer. As an experiment to see how remote

�le systems �t within the framework, I designed two classes, RemoteStore and RemoteDictionary,

that compose a remote �le system. They make the �les within a PersistentStoreContainer on a

remote computer accessible on the local computer.

System or application programs can mount a PersistentStore that is located on another

computer system on a local PersistentStore. If the mounted PersistentStore stores the data

for the root dictionary of a remote PersistentStoreContainer, all of the contained �les will be

accessible. Both RemoteStores and RemoteDictionaries represent objects on the remote system,

but the remote objects do not have to be active just because they have a corresponding object

on the local system. As with Sun Microsystems' NFS �le system, the state of the remote server

system does not depend on the state of the local client system.

The implementation of the RemoteStore and RemoteDictionary classes di�ers from the im-

plementation of all other subclasses of PersistentStore and PersistentStoreDictionary; instead of

overloading the operations discussed in Chapter 6, they overload the public operations of their

superclasses. Each operation sends a message to a server object on the remote system. The

message includes an operation code, the id-number of the remote object, and the arguments.

The server object invokes the corresponding operation on the remote object and returns the re-

sults. Implementing the public operations instead of protected ones has two advantages. First,

the internals of the classes on remote systems could be di�erent, but as long as the interface

de�ned by the remote classes is the same, the operations will perform correctly. Second, the

public operations could contain critical sections, which can be minimized if they send messages

to remote systems. The state of both RemoteStores and RemoteDictionaries consists of the id-

number of the corresponding remote object and the socket number used to communicate with

the remote computer.

One operation that the RemoteStore class does not overload is asA, which can be inherited

directly from PersistentStore, since the RemoteStore class overloads the supports operation. Re-

moteStores currently can support either a RemoteDictionary or a PersistentCharArray, so they

153

can provide access to all �le systems described in Section B.1 and most �le systems described

in Section B.2. (The mail �le system uses nested PersistentStoreContainers, which are not

currently supported by the remote �le system, though such support could be easily added.)

By supporting RemoteDictionaries, RemoteStores allow only a single PersistentObject to modify

the data of a dictionary; thus they ensure data consistency for dictionaries. By supporting

PersistentCharArrays, RemoteStores allow both local and remote PersistentObjects to modify the

same underlying data; thus they do not ensure data consistency for regular �les. These design

decisions re
ect the choices made by the designers of NFS.

Besides forwarding arguments to the corresponding dictionary on the remote computer, the

open and create operations of RemoteDictionary instantiate a RemoteStore if the result from the

remote computer indicates that the operation succeeded.

B.4 A General File System

All �le systems that were presented in Sections B.1{B.3 structure �les as arrays of bytes. This

is natural since these �le systems conform to standards de�ned by systems that all have the

same simple �le model. But the Choices �le system framework incorporates three models for

structuring the data within �les, and, therefore, it needs classes that support record �les and

user-de�ned persistent objects. A set of three classes, GeneralContainer, GeneralBlockAlloca-

tor, and GeneralFile, provides a general instantiation of the Storage Management Layer, which

supports all subclasses of PersistentObject.

Since one of my design goals was to simplify the implementation of the GeneralContainer

class while adding support for all kinds of PersistentObjects, I chose to combine the simpler

characteristics of both the System V and BSD UNIX �le systems with a
exible �le typing

mechanism. Therefore, the general �le system uses bit maps to store the state of both inode

and block allocation, but it neither divides a disk into cylinder groups nor fragments data blocks

for �les. Like the System V �le system, the general �le system divides each disk or partition

into three sections: a header, a �xed-size array of �le descriptors, and data blocks, which can

be unallocated, hold �le data, or hold block mapping information.

The header information contains a superblock, a �le descriptor allocation bit map, a block

allocation bit map, and a list of class names. The superblock includes the following �elds: a

154

magic number, a clustering factor, the size of each �le descriptor, the starting block numbers

of both bit maps, the starting block number of the class name list, the starting block number

of the �le descriptors, the starting block number of the data blocks, the total number of �le

descriptors, the number of free �le descriptors, the total number of blocks, and the number of

free blocks. The class name list contains the names of the subclasses of PersistentObject that

are supported by the contained Files.

Since there is no inherent limit on the length of class names, storing one in the �xed-size

�le descriptor is unacceptable. Instead, one bu�er is used to store the names of all classes of

PersistentObjects that are associated with the Files. This has several advantages:

� the class names can be e�ciently stored in a single bu�er as null-terminated strings (so

there is no need to impose an arbitrary limit on the length of individual class names),

� if several �les support the same class, the name only needs to be stored once, and

� each �le descriptor needs to store only an index (which requires only one integer) into its

container's list of class names.

Each �le descriptor is a �xed-size data structure that resembles a System V inode, except

that it stores block numbers the way BSD and AIX inodes do, as four-byte integers. Instead of

hard-coding the type of the �le using a few bits, the type of the �le is stored as a one-integer

index into the class name list. File descriptors also di�er from UNIX inodes because they store

a record size (for record-structured �les and persistent arrays that have an element size other

than one byte) and they do not store a reference (link) count. The general �le system can store

persistent objects that have arbitrary inter-object references; therefore, reference-counting is

inadequate for reclaiming unreachable �le descriptors. Thus, link counts are unnecessary.

The general �le system does not de�ne its own class of dictionary, since its Files can support

any subclass of PersistentObject. Any set of subclasses of PersistentStoreDictionary can be used

to name Files.

The GeneralContainer class encapsulates the class name list, the �le descriptor array, and

the �elds of the superblock that are unrelated to block allocation. The basicOpen operation

checks to ensure that the �le descriptor that corresponds to the given id-number has a non-

null class name index and then instantiates a GeneralFile with the appropriate arguments and

155

returns a reference to it. The basicCreate operation searches the free �le descriptor bit map. If

it �nds a free descriptor, it initializes it and then instantiates a GeneralFile with the appropriate

arguments and returns a reference to it. The basicClose deletes the instance of GeneralFile, but it

cannot make unreachable �le descriptors available for reallocation. Instead, a separate garbage

collection process is needed. The basicSynchronize operation writes any modi�ed superblock or

�le descriptor information to the underlying PersistentStore. The basicRootId operation returns

1, the inumber of the root directory.

The GeneralContainer constructor creates a GeneralBlockAllocator, which encapsulates the

block allocation bit map and implements the basicAllocate and basicFree operations.

A GeneralFile, which is a kind of UNIXInode, encapsulates an individual �le descriptor.

It performs the same functions as the SVIDInode, but instead of supporting just one kind

of PersistentStoreDictionary or PersistentArray, it supports any kind of PersistentObject. The

PersistentObjects presented in Appendix C are examples of objects that require the
exible

type support of GeneralFiles.

B.5 Summary

This appendix describes sets of concrete classes that implement four di�erent kinds of storage

management and naming for �le systems. These include the storage management and naming

of several traditional stream-oriented �le systems, �le systems customized to support the data

format of standard UNIX tools, a remote �le system, and a general �le system that supports all

kinds of PersistentObjects. These sets of classes illustrate many of the bene�ts of the framework.

One bene�t is various types of code reuse. Many storage management subsystems reuse

classes without any modi�cation. Examples include the File class used by all the systems in

Section B.2, and the SVIDBlockAllocator class used by the AIX �le system. Some classes inherit

major operations from a common superclass and de�ne simple operations that encapsulate

minor di�erences in data structures. Examples of common superclasses are the UNIXInode and

UNIXContainer classes. Almost all concrete classes share much of their design that they do

not inherit with other concrete classes. Examples include all subclasses of the UNIXInode and

UNIXContainer classes and all the container classes described in Section B.2.

156

Though much code and design is reused by the concrete classes described here, interface reuse

is even more important. All subclasses of the PersistentObject class use the interface de�ned

by the PersistentStore class, and the FileSystemInterface class uses the interfaces de�ned by the

PersistentStoreContainer and PersistentStoreDictionary classes. Therefore, as long as the classes

discussed in this appendix implement the operations de�ned by their abstract superclasses, the

rest of the classes in the framework will be able to use them without modi�cation.

157

Appendix C

Using a Persistent Object Store

To experiment with the programming of user-de�ned persistent objects, I decided to try to solve

a well-known, non-trivial problem while using them instead of standard C++ objects. Therefore,

I designed a set of classes that implement a simple programming language. I also decided to

concentrate on the semantics of the language, not the syntax. Instead of using a parser, users

of the language must create objects that represent a parse tree for the program and then invoke

the execute operation on the root of the tree. The language, called Persistent Object Language

(POL), de�nes eight di�erent kinds of parse nodes, called POLExpressions:

� function applications,

� builtin functions,

� expression lists,

� if expressions,

� integers,

� lambdas (or function de�nitions),

� strings,

� and variables.

158

C.1 The POLExpression Class

The classes that de�ne the various types of POLExpressions are arranged in the hierarchy shown

in Figure C.1. At run-time, POL programs use nested PersistentStoreDictionaries as their stack

of activation records.

1

AutoloadPersistentObject POLExpression

POLApply

POLBuiltin

POLExpressionList

POLIfStatement

POLInteger

POLLambda

POLString

POLVariable

Figure C.1: Persistent Object Language Class Hierarchy

The POLExpression class de�nes the protocol (set of operations) that instances of subclasses

use to communicate with each other. Figures C.4{C.12 contain simpli�ed versions of the C++

declarations for POLExpression and its subclasses.

The init operation allows objects to initialize their persistent data. All subclasses provide

their own implementations of init. The FileSystemInterface argument provides the environment

in which objects can look up symbolic names of other objects. Subclasses that de�ne instance

variables that are references to other POLExpressions must also implement the
ush operation.

The eval operation is intended to evaluate the portion of the parse tree rooted at the node

on which it is invoked. It takes a FileSystemInterface as an argument and returns a reference to a

POLExpression and an error code. The current directory of the FileSystemInterface represents the

current activation record. Most subclass implementations recursively invoke eval on the nodes

to which they refer, perform some calculation using the results of these recursive invocations,

and then return the result of the calculation. Subclasses that abstract primitive objects, like

1

See [ASU86] or [ASS85] for background on parse trees, activation records, and other programming language

topics.

159

integers or strings, inherit POLExpression's implementation of eval, which just returns the object

itself.

The printOn operation requests that an object print a human-readable representation of

itself on the given OutputStream. All subclasses provide their own implementations of printOn.

Builtin boolean functions can invoke the isTrue operation on objects. The default imple-

mentation of isTrue returns true for all instances. Builtin arithmetic functions can invoke the

asInt operation on objects. The default implementation of asInt returns 0 for all instances.

C.2 Subclasses of POLExpression

The POLInteger class abstracts a primitive POLExpression that stores an integer value. Its

implementation of the asInt operation returns the value that it stores, and its implementation

of the isTrue operation returns true if the value it stores is non-zero, otherwise it returns false.

For better performance, POLInteger provides a setValue operation, which sets the stored value

to the given argument and is more e�cient than the init operation.

The POLString class abstracts a primitive POLExpression that stores a character string.

The POLExpressionList class abstracts lists of POLExpressions, which can be used to imple-

ment sequentially evaluated program expressions. Each POLExpressionList can store references

to two POLExpressions: the �rst element of the list (car) and the rest of the list (cdr). The

eval operation recursively evaluates car and then cdr, and it returns the result of evaluating

cdr.

The POLIfExpression class abstracts conditional evaluation of expressions. Each POLIf-

Expression stores references to three POLExpressions. The eval operation �rst evaluates the

condition expression. If the condition evaluates to true, the operation returns the result

of evaluating the true expression; otherwise, it returns the result of evaluating the false

expression.

The POLApply class abstracts the application of functions to arguments. Each POLApply

object stores the number of arguments and an array and references to the arguments. The eval

operation performs the following steps:

1. invokes eval on each argument,

2. creates a dictionary in the current dictionary called \environment,"

160

3. changes the current dictionary to be the newly created one,

4. binds each argument to a name that is the character string representation of the argument

number,

5. invokes eval on the function,

6. removes each arguments name from the current dictionary,

7. changes the current dictionary to be the parent,

8. removes the dictionary called \environment," and

9. returns the result of invoking eval on the function.

The POLLambda class abstracts POL function de�nitions. Each POLLambda combines zero

or more formal parameters with some POL code. The names of the formal parameters are

stored as character strings, and the code is stored as a reference to a POLExpression. The eval

operation performs the following steps:

1. rebinds each numerically named argument to its formal parameter name,

2. invokes eval on the code POLExpression,

3. removes each formal parameter name for the current dictionary,

4. returns the result of invoking eval on the code.

The POLBuiltin class abstracts several types of builtin functions: unary and binary arith-

metic, unary and binary boolean, and output (with a variable number of arguments). (Many of

these functions could be built from a small set of primitives, but then POL programs would run

even slower.) The init operation stores the name of the builtin functions, which is usually the

same as C++ operator used for that function (for example, +, -, *, and / for add, subtract,

multiply, and divide). POLBuiltin uses names from the Pascal language for output functions

(write and writeln instead of printf). The eval operation uses numerically named argu-

ments instead of formal parameters. It performs the function that is indicated by the name

variable on these arguments.

161

The POLVariable class abstracts late bindings of object names to objects. A POLVariable can

refer to another POLExpression by storing its name instead of directly referring to it. Instances

of all other subclasses of POLExpression that refer to POLExpressions store direct references to

those POLExpressions. When de�ning recursive functions in POL, one must refer to objects that

have not yet been created. POLVariables solve the problem of \forward references," by deferring

the binding of the reference until after the object has been created. The eval operation retrieves

the current dictionary from the given FileSystemInterface. It then invokes the open operation

on the dictionary, passing it the variable name. If the object is found in the dictionary, eval

returns it; otherwise, it looks for the name in the parent dictionary. If needed, it will repeat

this process until it reaches the root dictionary. If the name is not found in any dictionary from

the current through the root dictionary, eval returns an error code.

> mkpo POLInteger 0 0

> mkpo POLInteger 1 1

> mkpo POLInteger 7 7

> mkpo POLBuiltin - -

> mkpo POLBuiltin "*" "*"

> mkpo POLBuiltin > >

> mkpo POLVariable N n

> mkpo POLVariable F factorial

> mkpo POLApply comparison > N 0

> mkpo POLApply subtraction - N 1

> mkpo POLApply recursion F subtraction

> mkpo POLApply multiplication "*" N recursion

> mkpo POLIfExpression condition comparison multiplication 1

> mkpo POLLambda factorial condition n

> mkpo POLApply factorialOf7 factorial 7

> factorialOf7

5040

>

Figure C.2: Example of User-de�ned Persistent Objects.

C.3 A Sample Program

The Choices system shell supports the mkpo command, which takes two or more arguments,

creates a PersistentObject of the class named in the �rst argument, and binds it to the �le

162

named in the second argument. The mkpo command sends the rest of the arguments to the

init operation of the newly created object. Then the object is automatically stored in the �le

system.

A sample shell program, shown in Figure C.2, demonstrates how one can create a parse

tree of POLExpressions that represents the application of the factorial function to the number

7. Figure C.3 shows the parse tree. Each node in the tree contains the class and name of the

object. For objects that contain a value in their instance data, the value is given. Inter-object

references are represented as arrows from the object containing the reference to the object to

which it refers.

When the shell parses the name of a command, it checks to see if the object is a binary

executable, a shell script, or an executable persistent object. If it is an executable persistent

object, the shell invokes the object's execute operation. In the case of these persistent language

expressions, they will invoke the necessary methods on each other, with objects being loaded

into memory and written back to disk automatically. After all operations have been performed,

the root of the parse tree returns the correct answer.

C.4 Summary

This appendix demonstrates the
exibility and extensibility of the Choices �le system frame-

work. It supports not only the traditional features of �le systems, such as data storage and

retrieval, but also the automatic retrieval and execution of persistent objects.

163

POLApply
"factorialOf7"

POLApply
"subtraction"

POLInteger
"1"

value=1

POLApply
"multiplication"

POLApply
"comparison"

POLIfExpression
"condition"

POLInteger
"7"

value=7

POLLambda
"factorial"
argv=["n"]

POLInteger
"0"

value=0

POLBuiltin
">"

value=>

POLVariable

value=n
"N"

POLBuiltin
"*"

value=*

POLApply
"recursion"

POLVariable

value=factorial
"F"

POLBuiltin
"−"

value=−

Figure C.3: Persistent objects in a parse tree for factorial(7)

164

C.5 Class Declarations

This section contains the simpli�ed versions of the C++ class declarations for POLExpression

and its subclasses.

enum POLErrorCode {

POLSuccess = 0,

ApplyNotInitialized,

ApplyArgumentEvaluationFailed,

IfNotInitialized,

NewObjectFailed,

ObjectOpenFailed,

SubclassResponsibility,

TooFewArguments,

TooManyArguments,

UnknownBuiltinBinaryFunction,

UnknownBuiltinNaryFunction,

UnknownBuiltinUnaryFunction

};

class POLExpression : public AutoloadPersistentObject {

public:

POLExpression(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

int execute();

int asInt();

int isTrue();

void printOn(OutputStream *);

POLExpression * eval(FileSystemInterface *, POLErrorCode &);

protected:

POLExpression * convertArg(int argn, char * argv[], int & status,

FileSystemInterface * fsi);

};

Figure C.4: Class Declaration: POLExpression

165

class POLInteger : public POLExpression {

public:

POLInteger(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

int isTrue();

int asInt();

void setValue(int value);

void printOn(OutputStream *);

protected:

int _value;

};

Figure C.5: Class Declaration: POLInteger

class POLString : public POLExpression {

public:

POLString(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

void printOn(OutputStream *);

protected:

char _value[232];

};

Figure C.6: Class Declaration: POLString

class POLBuiltin : public POLExpression {

public:

POLBuiltin(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

void printOn(OutputStream *);

POLExpression * eval(FileSystemInterface *, POLErrorCode &);

protected:

char _name[40];

};

Figure C.7: Class Declaration: POLBuiltin

166

class POLExpressionList : public POLExpression {

public:

POLExpressionList(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

void printOn(OutputStream *);

POLExpression * eval(FileSystemInterface *, POLErrorCode &);

void flush();

protected:

POLExpression * _car;

POLExpression * _cdr;

};

Figure C.8: Class Declaration: POLExpressionList

class POLIfExpression : public POLExpression {

public:

POLIfExpression(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

void printOn(OutputStream *);

POLExpression * eval(FileSystemInterface *, POLErrorCode &);

void flush();

protected:

POLExpression * _condition;

POLExpression * _true;

POLExpression * _false;

};

Figure C.9: Class Declaration: POLIfExpression

167

class POLLambda : public POLExpression {

public:

POLLambda(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

void printOn(OutputStream *);

POLExpression * eval(FileSystemInterface *, POLErrorCode &);

void flush();

protected:

POLExpression * _code;

int _argc;

char _argv[7][32];

};

Figure C.10: Class Declaration: POLLambda

class POLApply : public POLExpression {

public:

POLApply(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

void printOn(OutputStream *);

POLExpression * eval(FileSystemInterface *, POLErrorCode &);

void flush();

protected:

int _argc;

POLExpression * _argv[7];

};

Figure C.11: Class Declaration: POLApply

168

class POLVariable : public POLExpression {

public:

POLVariable(PersistentMemoryObject * mo);

int init(int argc, char *argv[], FileSystemInterface *);

void printOn(OutputStream *);

POLExpression * eval(FileSystemInterface *, POLErrorCode &);

protected:

char _value[232];

};

Figure C.12: Class Declaration: POLVariable

169

Bibliography

[ABCM83] M.P. Atkinson, P.J. Bailey, K.J. Chisholm W.P. Cockshott, and R. Morrison. An

Approach to Persistent Programming. The Computer Journal, 26(4):360{365, 1983.

[AG89a] R. Agrawal and N. H. Gehani. ODE (Object Database and Environment): The

Language and the DataModel. In Proceedings of ACM-SIGMOD 1989 International

Conference on Management of Data, pages 36{45, Portland, Oregon, May-June

1989.

[AG89b] R. Agrawal and N. H. Gehani. Rationale for the Design of Persistence and Query

Processing Facilities in the Database Programming Language O++. In Proceedings

of Second International Workshop on Database Programming Languages, Oregon

Coast, June 1989.

[AH87] Timothy Andrews and Craig Harris. Combining Language and Database Advances

in an Object-Oriented Development Environment. In Proceedings of OOPSLA '87,

pages 430{440, Orlando, Florida, October 1987.

[ASS85] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpre-

tation of Computer Programs. MIT Press, Cambridge, Massachusetts, 1985.

[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers, Principles, Tech-

niques, and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[ATT85] ATT. UNIX Time Sharing System Programmer's Manual, Eight Edition. AT&T

Bell Laboratories, Murray Hill, New Jersey, 1985.

[Bac86] Maurice J. Bach. The Design of the UNIX Operating System. Prentice Hall, En-

glewood Cli�s, New Jersey, 1986.

170

[BBR

+

89] D.S. Batory, J.R. Barnett, J. Roy, B.C. Twichell, and J. Garza. Construction of

File Management Systems from Software Components. In COMPSAC 1989, 1989.

[Bii88] BiiN. BiiN Operating System Technical Overview. Technical report, BiiN, 1988.

[BMO

+

89] Robert Bretl, David Maier, Allen Otis, Jason Penney, Bruce Schuchardt, Jacob

Stein, E. Harold Williams, and Monty Williams. The GemStone Data Manage-

ment System. In Won Kim and Frederick H. Lochovsky, editors, Object-Oriented

Concepts, Databases, and Applications, pages 283{308. Addison-Wesley, Reading,

Massachusetts, 1989.

[Bro89] Alfred Leonard Brown. Persistent object stores. Technical Report Persistent Pro-

gramming Report 71, Universities of St Andrews and Glasgow, October 1989.

[BS88] Lubomir Bic and Alan C. Shaw. The Logical Design of Operating Systems. Prentice

Hall, Englewood Cli�s, New Jersey, 1988.

[CDRS89] Michael J. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J. Shekita.

Storage Management for Objects in EXODUS. In Won Kim and Frederick H.

Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications, pages

341{370. Addison-Wesley, Reading, Massachusetts, 1989.

[CKH

+

89] Arunodaya Chatterjee, Arjun Khanna, Ying Hung, Russell McLaren, Sudha

Narayanaswamy, and Nandini Ajmani. Es-kit: A Distributed, Object-Oriented

Operating System. Technical Report ACT-ESP-374-89, Microelectronics and Com-

puter Technology Corporation, October 1989.

[CRJ87] Roy H. Campbell, Vincent Russo, and Gary Johnston. Choices: The Design of a

Multiprocessor Operating System. In Proceedings of the USENIX C++ Workshop,

pages 109{123, Santa Fe, New Mexico, November 1987.

[CSG

+

88] Ellis S. Cohen, Dilip A. Soni, Raimund Gluecker, William M. Hasling, Robert W.

Schwanke, and Michael E. Wagner. Version Management in Gypsy. In Proceed-

ings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-

tical Software Development Environments, pages 201{215, Boston, Massachusetts,

November 1988.

171

[Dei84] Harvey M. Deitel. An Introduction to Operating Systems. Addison-Wesley, Reading,

Massachusetts, 1984.

[Dem88] Richard A. Demers. Distributed Files for SAA. IBM Systems Journal, 27(3):348{

361, 1988.

[Deu89] L. Peter Deutsch. Design Reuse and Frameworks in the Smalltalk-80 Programming

System. In Ted J. Biggersta� and Alan J. Perlis, editors, Software Reusability,

volume II, pages 55{71. ACM Press, 1989.

[Dig86] Digitalk. Smalltalk/V Tutorial and Programming Handbook. Digitalk Inc., 9841

Airport Boulevard, Los Angeles, California 90045, 1986.

[DS89] Peter Dibble and Michael Scott. Beyond Striping: The Bridge Multiprocessor File

System. Computer Architecture News, 17(5):32{39, September 1989.

[FAC

+

89] D.H. Fishman, J. Annevelink, E. Chow, T. Connors, J.W. Davis, W. Hasan, C.G.

Hoch, W. Kent, S. Leichner, P. Lyngbaek, B. Mahbod, M.A. Neimat, T. Risch, M.C.

Shan, and W.K. Wilkinson. Overview of the Iris DBMS. In Won Kim and Freder-

ick H. Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications,

pages 219{250. Addison-Wesley, Reading, Massachusetts, 1989.

[Flo88] G. H. Florijn. A Technical View of the Portable Common Tool Environment. Tech-

nical Report RP/dvm-88/8, Software Engineering Research Centrum, Utracht, The

Netherlands, November 1988.

[Gir88] Gintaras R. Gircys. Understanding and Using COFF. O'Reilly and Associates, Inc.,

Newton, Massachusetts, 1988.

[GNS88] David K. Gi�ord, Roger M. Needham, and Michail D. Schroeder. The Cedar File

System. Communications of the ACM, 31(3):288{298, March 1988.

[Gol84] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment.

Addison-Wesley, Reading, Massachusetts, 1984.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implemen-

tation. Addison-Wesley, Reading, Massachusetts, 1983.

172

[GWM89] Erich Gamma, Andr�e Weinand, and Rudolf Marty. Integration of a Programming

Environment into ET++: A Case Study. In Stephen Cook, editor, Proceedings of

the 1989 European Conference on Object-Oriented Programming, pages 283{298,

Nottingham, UK, July 1989. Cambridge University Press.

[HKM

+

88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-

narayanan, Robert N. Sidebotham, and Michael J. West. Scale and Performance in

a Distributed File System. ACM Transactions on Computer Systems, 6(1):51{81,

February 1988.

[HS82] Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures. Computer

Science Press, Rockville, Maryland 20850, 1982.

[Hug79] Joan K. Hughes. PL/I Structured Programming. John Wiley and Sons, New York,

New York, 1979.

[IC91] Nayeem Islam and Roy Campbell. The Performance of Message Based Applications

on an Object Oriented Operating System. Technical Report UIUCDCS-R-88-1455,

University of Illinois Urbana-Champaign, April 1991.

[JC89] Gary M. Johnston and Roy H. Campbell. An Object-Oriented Implementation

of Distributed Virtual Memory. In Proceedings of the Workshop on Experiences

with Building Distributed and Multiprocessor Systems, pages 39{57, Ft. Lauderdale,

Florida, October 1989.

[JR91] Ralph E. Johnson and Vincent F. Russo. Reusing Object-Oriented Designs. Techni-

cal Report UIUCDCS-R-91-1696, University of Illinois at Urbana-Champaign, May

1991.

[JW75] Kathleen Jensen and Niklaus Wirth. Pascal: User Manual and Report. Springer-

Verlag, New York, New York, 1975.

[KBC

+

89] Won Kim, Nat Ballou, Hong-Tai Chou, Jorge F. Garza, and Darrell Woelk. Fea-

tures of the ORION Object-Oriented Database. In Won Kim and Frederick H.

Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications, pages

251{282. Addison-Wesley, Reading, Massachusetts, 1989.

173

[Kil86] T.J. Killian. Processes as Files. In Proceedings of the Summer 1984 USENIX

Conference, pages 203{207, 1986.

[Kou91] Panos Kougiouris. Devices Drivers for an Object-Oriented Operating System. Mas-

ter's thesis, University of Illinois at Urbana-Champaign, October 1991.

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Pren-

tice Hall, Englewood Cli�s, New Jersey, 1978.

[Mac89] International Business Machines. Distributed Data Management, Level 2.0 Archi-

tecture, Reference. Technical Report SC21-9526-2, International Business Machines

Corporation, January 1989.

[MCK91] Peter W. Madany, Roy H. Campbell, and Panos Kougiouris. Experiences Building

an Object-Oriented System in C++. In Technology of Object-Oriented Languages

and Systems Conference, Paris, France, March 1991.

[MCRL89] Peter W. Madany, Roy H. Campbell, Vincent F. Russo, and Douglas E. Leyens. A

Class Hierarchy for Building Stream-Oriented File Systems. In Stephen Cook, edi-

tor, Proceedings of the 1989 European Conference on Object-Oriented Programming,

pages 311{328, Nottingham, UK, July 1989. Cambridge University Press.

[MG89] Jos�e Alves Marques and Paulo Guedes. Extending the Operating System to Support

an Object-Oriented Environment. In Proceedings of OOPSLA '89, pages 113{122,

New Orleans, Louisiana, September 1989.

[MJLF84] M. K. McKusick, W. N. Joy, S. J. Le�er, and R. S. Fabry. A Fast File System for

UNIX. ACM Transactions on Computer Systems, 2(3):181{197, August 1984.

[MLRC88] Peter W. Madany, Douglas E. Leyens, Vincent F. Russo, and Roy H. Campbell. A

C++ Class Hierarchy for Building UNIX-Like File Systems. In Proceedings of the

USENIX C++ Conference, pages 65{79, Denver, Colorado, October 1988.

[Nie89] Oscar Nierstrasz. A Survey of Object-Oriented Concepts. In Won Kim and Freder-

ick H. Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications,

pages 3{22. Addison-Wesley, Reading, Massachusetts, 1989.

174

[Nor85] Peter Norton. The Peter Norton Programmer's Guide to the IBM PC. Microsoft

Press, 10700 Northrup Way, Box 97200, Bellevue, Washington 98009, 1985.

[NWO88] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the Sprite

Network File System. ACM Transactions on Computer Systems, 6(1):134{154,

February 1988.

[OD89] John Ousterhout and Fred Douglis. Beating the I/O Bottleneck: A Case for Log-

Structured File Systems. Operating Systems Review, 23(1):11{28, January 1989.

[OJ90] William F. Opdyke and Ralph E. Johnson. Refactoring: an Aid in Designing Ap-

plication Frameworks and Evolving Object-Oriented System. In James TenEyck,

editor, Proceedings of the Symposium on Object-Oriented Programming Emphasiz-

ing Practical Applications (SOOPPA), pages 145{160, Nottingham, UK, September

1990.

[Org87] International Standards Organization. Information Processing Systems | Open

Systems Interconnection | File Transfer, Access and Management. Technical Re-

port ISO 8751-1, International Standards Organization, September 1987.

[PD88] D. V. Pitts and P. Dasgupta. Object Memory and Storage Management in the

Clouds Kernel. In Proceedings of the 8th International Conference on Distributed

Computing Systems, pages 10{17. IEEE, June 1988.

[PJC

+

90] Fred Pollack, Dave Johnson, Dave Carson, Ron Ebrsole, Vittal Kini, Konrad Lai,

Bernie Silvernail, and Steve Stacey. A VLSI-Intensive Fault Tolerant Computer

Architecture. In Proceedings of IEE Spring 1990 Computer Conference, February

1990.

[PKD

+

90] Fred Pollack, Kevin Kahn, T. Don Dennis, Gerald Holzhammer, Herman D'Hooge,

and Steve Tolopka. An Object-Oriented Distributed Operating System. In Proceed-

ings of IEE Spring 1990 Computer Conference, February 1990.

[PLNZ88] C. Brian Pinkerton, Edward D. Lazowska, David Notkin, and John Zahorjan. A

Heterogeneous Remote File System. Technical Report 88-08-08, University of Wash-

ington, Seattle, Washington, August 1988.

175

[PS85] James L. Peterson and Abraham Silberschatz. Operating System Concepts.

Addison-Wesley, Reading, Massachusetts, 1985.

[RC89] Vincent Russo and Roy H. Campbell. Virtual Memory and Backing Storage Man-

agement in Multiprocessor Operating Systems using Class Hierarchical Design. In

Proceedings of OOPSLA '89, pages 267{278, New Orleans, Louisiana, September

1989.

[RCS89] Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. The Design of the E

Programming Language. Technical Report 824, Computer Sciences Department,

University of Wisconsin, Madison, Wisconsin, February 1989.

[RFH

+

86] A. P. Rifkin, M. P. Forbes, R. L. Hamilton, M. Sabrio, S. Shah, and K. Yueh. RFS

Architectural Overview. In Proceedings of the Summer 1986 USENIX Conference,

pages 248{259, Atlanta, Georgia, 1986.

[RJC88] Vincent Russo, Gary Johnston, and Roy Campbell. Process management and ex-

ception handling in multiprocessor operating systems using object-oriented design

techniques. In Proceedings of OOPSLA '88, 1988.

[Rus91] Vincent F. Russo. An Object-Oriented Operating System. PhD thesis, University

of Illinois at Urbana-Champaign, January 1991.

[Sam69] Jean E. Sammet. PROGRAMMING LANGUAGES: History and Fundamentals.

Prentice Hall, Englewood Cli�s, New Jersey, 1969.

[SGK

+

85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and Im-

plementation of the Sun Network Filesystem. In Proceedings of the Summer 1985

USENIX Conference, pages 119{130, Portland, Oregon, June 1985.

[SGM89] Marc Shapiro, Philippe Gautron, and Laurence Mosseri. Persistence and Migration

for C++ Objects. In Stephen Cook, editor, Proceedings of the 1989 European Con-

ference on Object-Oriented Programming, pages 191{204, Nottingham, UK, July

1989. Cambridge University Press.

[Sha90] Mary Shaw. Prospects for an engineering discipline of software. IEEE Software,

pages 15{24, November 1990.

176

[Sha91] Jay Shah. VAX/VMS: Concepts and Facilities. McGraw Hill, New York, New York,

1991.

[SS79] Nancy B. Stern and Robert A. Stern. Structured COBOL Programming. John Wiley

and Sons, New York, New York, 1979.

[Ste87] Lynn Andrea Stein. Delegation is Inheritance. In Proceedings of OOPSLA '87,

pages 138{146, Orlando, Florida, October 1987.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,

Massachusetts, 1986.

[Tan86] Andrew S. Tanenbaum. OPERATING SYSTEMS: Design and Implementation.

Prentice Hall, Englewood Cli�s, New Jersey, 1986.

[Tho78] K. Thompson. Unix Implementation. Bell System Technical Journal, 57(6):1931{

1946, July 1978.

[US87] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In Proceedings

of OOPSLA '87, pages 227{242, Orlando, Florida, October 1987.

[Vli90] John M. Vlissides. Generalized Graphical Object Editing. PhD thesis, Stanford

University, June 1990.

[WBJ90] Rebecca J. Wirfs-Brock and Ralph E. Johnson. Surveying Current Research

in Object-Oriented Programming. Communications of the ACM, 33(9):104{124,

September 1990.

[Weg87] Peter Wegner. Dimensions of Object-Based Language Design. In Proceedings of

OOPSLA '87, pages 168{183, Orlando, Florida, October 1987.

[WPE

+

83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The

LOCUS Distributed Operating System. ACM Operating Systems Review, 17(5):49{

69, October 1983.

[ZJ90] Jonathan Zweig and Ralph E. Johnson. The conduit: A communication abstrac-

tion in C++. In Proceedings of the USENIX C++ Conference, pages 191{204, San

Francisco, California, April 1990.

177

Vita

Peter William Madany was born in 1961 and raised in South Holland, Illinois. He received his

B.A. in Math/Computer Science and Chemistry from Trinity Christian College in 1982.

He worked for IIT Research Institute in Chicago, Illinois from 1980 until 1984. While work-

ing at IITRI, Peter earned his M.S. in Computer Science from Illinois Institute of Technology in

1984. During the �rst half of 1985, he completed two text retrieval projects for I.S. Grupe, Inc.

in Lombard, Illinois. Then Peter joined AT&T Bell Laboratories in Naperville, Illinois, where

he worked on an experimental data network controller until he enrolled in the Ph.D. program

at the University of Illinois in 1988.

At the University of Illinois, Peter worked as a research assistant for Roy Campbell on the

Choices operating system project. He also worked as an independent computer consultant.

Upon completion of his doctoral studies, he accepted a position as a Sta� Engineer at Sun

Microsystems Laboratories in Mountain View, California in 1991.

178

